Spaces:
Runtime error
Runtime error
''' | |
For MEMO implementations of CIFAR-ResNet | |
Reference: | |
https://github.com/khurramjaved96/incremental-learning/blob/autoencoders/model/resnet32.py | |
''' | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class DownsampleA(nn.Module): | |
def __init__(self, nIn, nOut, stride): | |
super(DownsampleA, self).__init__() | |
assert stride == 2 | |
self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) | |
def forward(self, x): | |
x = self.avg(x) | |
return torch.cat((x, x.mul(0)), 1) | |
class ResNetBasicblock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(ResNetBasicblock, self).__init__() | |
self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn_a = nn.BatchNorm2d(planes) | |
self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn_b = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
def forward(self, x): | |
residual = x | |
basicblock = self.conv_a(x) | |
basicblock = self.bn_a(basicblock) | |
basicblock = F.relu(basicblock, inplace=True) | |
basicblock = self.conv_b(basicblock) | |
basicblock = self.bn_b(basicblock) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
return F.relu(residual + basicblock, inplace=True) | |
class GeneralizedResNet_cifar(nn.Module): | |
def __init__(self, block, depth, channels=3): | |
super(GeneralizedResNet_cifar, self).__init__() | |
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110' | |
layer_blocks = (depth - 2) // 6 | |
self.conv_1_3x3 = nn.Conv2d(channels, 16, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn_1 = nn.BatchNorm2d(16) | |
self.inplanes = 16 | |
self.stage_1 = self._make_layer(block, 16, layer_blocks, 1) | |
self.stage_2 = self._make_layer(block, 32, layer_blocks, 2) | |
self.out_dim = 64 * block.expansion | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
# m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = DownsampleA(self.inplanes, planes * block.expansion, stride) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv_1_3x3(x) # [bs, 16, 32, 32] | |
x = F.relu(self.bn_1(x), inplace=True) | |
x_1 = self.stage_1(x) # [bs, 16, 32, 32] | |
x_2 = self.stage_2(x_1) # [bs, 32, 16, 16] | |
return x_2 | |
class SpecializedResNet_cifar(nn.Module): | |
def __init__(self, block, depth, inplanes=32, feature_dim=64): | |
super(SpecializedResNet_cifar, self).__init__() | |
self.inplanes = inplanes | |
self.feature_dim = feature_dim | |
layer_blocks = (depth - 2) // 6 | |
self.final_stage = self._make_layer(block, 64, layer_blocks, 2) | |
self.avgpool = nn.AvgPool2d(8) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
# m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
nn.init.kaiming_normal_(m.weight) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=2): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = DownsampleA(self.inplanes, planes * block.expansion, stride) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, base_feature_map): | |
final_feature_map = self.final_stage(base_feature_map) | |
pooled = self.avgpool(final_feature_map) | |
features = pooled.view(pooled.size(0), -1) #bs x 64 | |
return features | |
#For cifar & MEMO | |
def get_resnet8_a2fc(): | |
basenet = GeneralizedResNet_cifar(ResNetBasicblock,8) | |
adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,8) | |
return basenet,adaptivenet | |
def get_resnet14_a2fc(): | |
basenet = GeneralizedResNet_cifar(ResNetBasicblock,14) | |
adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,14) | |
return basenet,adaptivenet | |
def get_resnet20_a2fc(): | |
basenet = GeneralizedResNet_cifar(ResNetBasicblock,20) | |
adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,20) | |
return basenet,adaptivenet | |
def get_resnet26_a2fc(): | |
basenet = GeneralizedResNet_cifar(ResNetBasicblock,26) | |
adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,26) | |
return basenet,adaptivenet | |
def get_resnet32_a2fc(): | |
basenet = GeneralizedResNet_cifar(ResNetBasicblock,32) | |
adaptivenet = SpecializedResNet_cifar(ResNetBasicblock,32) | |
return basenet,adaptivenet | |