Spaces:
Runtime error
Runtime error
File size: 11,868 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import logging
import numpy as np
import os
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader,Dataset
from models.base import BaseLearner
from utils.inc_net import CosineIncrementalNet, FOSTERNet, IncrementalNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy
from utils.autoaugment import CIFAR10Policy,ImageNetPolicy
from utils.ops import Cutout
from torchvision import datasets, transforms
EPSILON = 1e-8
class SSRE(BaseLearner):
def __init__(self, args):
super().__init__(args)
self.args = args
self._network = IncrementalNet(args, False)
self._protos = []
def after_task(self):
self._known_classes = self._total_classes
self._old_network = self._network.copy().freeze()
if hasattr(self._old_network,"module"):
self.old_network_module_ptr = self._old_network.module
else:
self.old_network_module_ptr = self._old_network
#self.save_checkpoint("{}_{}_{}".format(self.args["model_name"],self.args["init_cls"],self.args["increment"]))
def incremental_train(self, data_manager):
self.data_manager = data_manager
if self._cur_task == 0:
self.data_manager._train_trsf = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=63/255),
CIFAR10Policy(),
Cutout(n_holes=1, length=16)
]
else:
self.data_manager._train_trsf = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=63/255),
]
self._cur_task += 1
self._total_classes = self._known_classes + \
data_manager.get_task_size(self._cur_task)
self._network.update_fc(self._total_classes)
self._network_module_ptr = self._network
logging.info("Model Expansion!")
self._network_expansion()
logging.info(
'Learning on {}-{}'.format(self._known_classes, self._total_classes))
logging.info('All params: {}'.format(count_parameters(self._network)))
logging.info('Trainable params: {}'.format(
count_parameters(self._network, True)))
train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), source='train',mode='train', appendent=self._get_memory())
if self._cur_task == 0:
batch_size = 64
else:
batch_size = self.args["batch_size"]
self.train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=self.args["num_workers"], pin_memory=True)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes), source='test', mode='test')
self.test_loader = DataLoader(
test_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=self.args["num_workers"])
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
logging.info("Model Compression!")
self._network_compression()
def _train(self, train_loader, test_loader):
resume = False
if self._cur_task in []:
self._network.load_state_dict(torch.load("{}_{}_{}_{}.pkl".format(self.args["model_name"],self.args["init_cls"],self.args["increment"],self._cur_task))["model_state_dict"])
resume = True
self._network.to(self._device)
if hasattr(self._network, "module"):
self._network_module_ptr = self._network.module
if not resume:
self._epoch_num = self.args["epochs"]
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self._network.parameters(
)), lr=self.args["lr"], weight_decay=self.args["weight_decay"])
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=self.args["step_size"], gamma=self.args["gamma"])
self._train_function(train_loader, test_loader, optimizer, scheduler)
self._build_protos()
def _build_protos(self):
with torch.no_grad():
for class_idx in range(self._known_classes, self._total_classes):
data, targets, idx_dataset = self.data_manager.get_dataset(np.arange(class_idx, class_idx+1), source='train',
mode='test', ret_data=True)
idx_loader = DataLoader(idx_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=4)
vectors, _ = self._extract_vectors(idx_loader)
class_mean = np.mean(vectors, axis=0)
self._protos.append(class_mean)
def train(self):
if self._cur_task > 0:
self._network.eval()
return
self._network.train()
def _train_function(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(self._epoch_num))
for _, epoch in enumerate(prog_bar):
self.train()
losses = 0.
losses_clf, losses_fkd, losses_proto = 0., 0., 0.
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(
self._device, non_blocking=True), targets.to(self._device, non_blocking=True)
logits, loss_clf, loss_fkd, loss_proto = self._compute_ssre_loss(inputs,targets)
loss = loss_clf + loss_fkd + loss_proto
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
losses_clf += loss_clf.item()
losses_fkd += loss_fkd.item()
losses_proto += loss_proto.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(
correct)*100 / total, decimals=2)
if epoch % 5 != 0:
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}'.format(
self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc)
else:
test_acc = self._compute_accuracy(self._network, test_loader)
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc, test_acc)
prog_bar.set_description(info)
logging.info(info)
def _compute_ssre_loss(self,inputs, targets):
if self._cur_task == 0:
logits = self._network(inputs)["logits"]
loss_clf = F.cross_entropy(logits/self.args["temp"], targets)
return logits, loss_clf, torch.tensor(0.), torch.tensor(0.)
features = self._network_module_ptr.extract_vector(inputs) # N D
with torch.no_grad():
features_old = self.old_network_module_ptr.extract_vector(inputs)
protos = torch.from_numpy(np.array(self._protos)).to(self._device) # C D
with torch.no_grad():
weights = F.normalize(features,p=2,dim=1,eps=1e-12) @ F.normalize(protos,p=2,dim=1,eps=1e-12).T
weights = torch.max(weights,dim=1)[0]
# mask = weights > self.args["threshold"]
mask = weights
logits = self._network(inputs)["logits"]
loss_clf = F.cross_entropy(logits/self.args["temp"],targets,reduction="none")
# loss_clf = torch.mean(loss_clf * ~mask)
loss_clf = torch.mean(loss_clf * (1-mask))
loss_fkd = torch.norm(features - features_old, p=2, dim=1)
loss_fkd = self.args["lambda_fkd"] * torch.sum(loss_fkd * mask)
index = np.random.choice(range(self._known_classes),size=self.args["batch_size"],replace=True)
proto_features = np.array(self._protos)[index]
proto_targets = index
proto_features = proto_features
proto_features = torch.from_numpy(proto_features).float().to(self._device,non_blocking=True)
proto_targets = torch.from_numpy(proto_targets).to(self._device,non_blocking=True)
proto_logits = self._network_module_ptr.fc(proto_features)["logits"]
loss_proto = self.args["lambda_proto"] * F.cross_entropy(proto_logits/self.args["temp"], proto_targets)
return logits, loss_clf, loss_fkd, loss_proto
def eval_task(self, save_conf=False):
y_pred, y_true = self._eval_cnn(self.test_loader)
cnn_accy = self._evaluate(y_pred, y_true)
if hasattr(self, '_class_means'):
y_pred, y_true = self._eval_nme(self.test_loader, self._class_means)
nme_accy = self._evaluate(y_pred, y_true)
elif hasattr(self, '_protos'):
y_pred, y_true = self._eval_nme(self.test_loader, self._protos/np.linalg.norm(self._protos,axis=1)[:,None])
nme_accy = self._evaluate(y_pred, y_true)
else:
nme_accy = None
if save_conf:
_pred = y_pred.T[0]
_pred_path = os.path.join(self.args['logfilename'], "pred.npy")
_target_path = os.path.join(self.args['logfilename'], "target.npy")
np.save(_pred_path, _pred)
np.save(_target_path, y_true)
_save_dir = os.path.join(f"./results/{self.args['model_name']}/conf_matrix/{self.args['prefix']}")
os.makedirs(_save_dir, exist_ok=True)
_save_path = os.path.join(_save_dir, f"{self.args['csv_name']}.csv")
with open(_save_path, "a+") as f:
f.write(f"{self.args['model_name']},{_pred_path},{_target_path} \n")
return cnn_accy, nme_accy
def _network_expansion(self):
if self._cur_task > 0:
for p in self._network.convnet.parameters():
p.requires_grad = True
for k, v in self._network.convnet.named_parameters():
if 'adapter' not in k:
v.requires_grad = False
# self._network.convnet.re_init_params() # do not use!
self._network.convnet.switch("parallel_adapters")
def _network_compression(self):
model_dict = self._network.state_dict()
for k, v in model_dict.items():
if 'adapter' in k:
k_conv3 = k.replace('adapter', 'conv')
if 'weight' in k:
model_dict[k_conv3] = model_dict[k_conv3] + F.pad(v, [1, 1, 1, 1], 'constant', 0)
model_dict[k] = torch.zeros_like(v)
elif 'bias' in k:
model_dict[k_conv3] = model_dict[k_conv3] + v
model_dict[k] = torch.zeros_like(v)
else:
assert 0
self._network.load_state_dict(model_dict)
self._network.convnet.switch("normal") |