File size: 11,980 Bytes
cb80c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import logging
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader,Dataset
from models.base import BaseLearner
from utils.inc_net import CosineIncrementalNet, FOSTERNet, IL2ANet, IncrementalNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy

EPSILON = 1e-8


class IL2A(BaseLearner):
    def __init__(self, args):
        super().__init__(args)
        self.args = args
        self._network = IL2ANet(args, False)
        self._protos = []
        self._covs = []


    def after_task(self):
        self._known_classes = self._total_classes
        self._old_network = self._network.copy().freeze()
        if hasattr(self._old_network,"module"):
            self.old_network_module_ptr = self._old_network.module
        else:
            self.old_network_module_ptr = self._old_network
        #self.save_checkpoint("{}_{}_{}".format(self.args["model_name"],self.args["init_cls"],self.args["increment"]))
    def incremental_train(self, data_manager):
        self.data_manager = data_manager
        self._cur_task += 1

        task_size = self.data_manager.get_task_size(self._cur_task)
        self._total_classes = self._known_classes + task_size
        self._network.update_fc(self._known_classes,self._total_classes,int((task_size-1)*task_size/2))
        self._network_module_ptr = self._network
        logging.info(
            'Learning on {}-{}'.format(self._known_classes, self._total_classes))

        
        logging.info('All params: {}'.format(count_parameters(self._network)))
        logging.info('Trainable params: {}'.format(
            count_parameters(self._network, True)))

        train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), source='train',
                                                 mode='train', appendent=self._get_memory())
        self.train_loader = DataLoader(
            train_dataset, batch_size=self.args["batch_size"], shuffle=True, num_workers=self.args["num_workers"], pin_memory=True)
        test_dataset = data_manager.get_dataset(
            np.arange(0, self._total_classes), source='test', mode='test')
        self.test_loader = DataLoader(
            test_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=self.args["num_workers"])

        if len(self._multiple_gpus) > 1:
            self._network = nn.DataParallel(self._network, self._multiple_gpus)
        self._train(self.train_loader, self.test_loader)

        if len(self._multiple_gpus) > 1:
            self._network = self._network.module


    def _train(self, train_loader, test_loader):
        
        resume = False
        if self._cur_task in []:
            self._network.load_state_dict(torch.load("{}_{}_{}_{}.pkl".format(self.args["model_name"],self.args["init_cls"],self.args["increment"],self._cur_task))["model_state_dict"])
            resume = True
        self._network.to(self._device)
        if hasattr(self._network, "module"):
            self._network_module_ptr = self._network.module
        if not resume:
            self._epoch_num = self.args["epochs"]
            optimizer = torch.optim.Adam(self._network.parameters(), lr=self.args["lr"], weight_decay=self.args["weight_decay"])
            scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=self.args["step_size"], gamma=self.args["gamma"])
            self._train_function(train_loader, test_loader, optimizer, scheduler)
        self._build_protos()
            
        
    def _build_protos(self):
        with torch.no_grad():
            for class_idx in range(self._known_classes, self._total_classes):
                data, targets, idx_dataset = self.data_manager.get_dataset(np.arange(class_idx, class_idx+1), source='train',
                                                                    mode='test', ret_data=True)
                idx_loader = DataLoader(idx_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=4)
                vectors, _ = self._extract_vectors(idx_loader)
                class_mean = np.mean(vectors, axis=0)
                self._protos.append(class_mean)
                cov = np.cov(vectors.T)
                self._covs.append(cov)

    def _train_function(self, train_loader, test_loader, optimizer, scheduler):
        prog_bar = tqdm(range(self._epoch_num))
        for _, epoch in enumerate(prog_bar):
            self._network.train()
            losses = 0.
            losses_clf, losses_fkd, losses_proto = 0., 0., 0.
            correct, total = 0, 0
            for i, (_, inputs, targets) in enumerate(train_loader):
                inputs, targets = inputs.to(
                    self._device, non_blocking=True), targets.to(self._device, non_blocking=True)
                inputs,targets = self._class_aug(inputs,targets)
                logits, loss_clf, loss_fkd, loss_proto = self._compute_il2a_loss(inputs,targets)
                loss = loss_clf + loss_fkd + loss_proto
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                losses += loss.item()
                losses_clf += loss_clf.item()
                losses_fkd += loss_fkd.item()
                losses_proto += loss_proto.item()
                _, preds = torch.max(logits, dim=1)
                correct += preds.eq(targets.expand_as(preds)).cpu().sum()
                total += len(targets)
            scheduler.step()
            train_acc = np.around(tensor2numpy(
                correct)*100 / total, decimals=2)
            if epoch % 5 != 0:
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}'.format(
                    self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc)
            else:
                test_acc = self._compute_accuracy(self._network, test_loader)
                info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
                    self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc, test_acc)
            prog_bar.set_description(info)
            logging.info(info)

    def _compute_il2a_loss(self,inputs, targets):
        logits = self._network(inputs)["logits"]
        loss_clf = F.cross_entropy(logits/self.args["temp"], targets)
        
        if self._cur_task == 0:
            return logits, loss_clf, torch.tensor(0.), torch.tensor(0.)
        
        features = self._network_module_ptr.extract_vector(inputs)
        features_old = self.old_network_module_ptr.extract_vector(inputs)
        loss_fkd = self.args["lambda_fkd"] * torch.dist(features, features_old, 2)
        
        index = np.random.choice(range(self._known_classes),size=self.args["batch_size"],replace=True)
        
        proto_features = np.array(self._protos)[index]
        proto_targets = index
        proto_features = torch.from_numpy(proto_features).float().to(self._device,non_blocking=True)
        proto_targets = torch.from_numpy(proto_targets).to(self._device,non_blocking=True)
        
        proto_logits = self._network_module_ptr.fc(proto_features)["logits"][:,:self._total_classes]
        

        proto_logits = self._semantic_aug(proto_logits,proto_targets,self.args["ratio"])
        
        loss_proto = self.args["lambda_proto"] * F.cross_entropy(proto_logits/self.args["temp"], proto_targets)
        return logits, loss_clf, loss_fkd, loss_proto
        
    
    def _semantic_aug(self,proto_logits,proto_targets,ratio):
        # weight_fc = self._network_module_ptr.fc.weight.data[:self._total_classes] # don't use it ! data is not involved in back propagation
        weight_fc = self._network_module_ptr.fc.weight[:self._total_classes]
        N,C,D = self.args["batch_size"], self._total_classes, weight_fc.shape[1]
        
        N_weight = weight_fc.expand(N,C,D) # NCD
        N_target_weight = torch.gather(N_weight, 1, proto_targets[:,None,None].expand(N,C,D)) # NCD
        N_v = N_weight-N_target_weight
        N_cov = torch.from_numpy(np.array(self._covs))[proto_targets].float().to(self._device) # NDD

        proto_logits = proto_logits + ratio/2* torch.diagonal(N_v @ N_cov @ N_v.permute(0,2,1),dim1=1,dim2=2) # NC
        
        return proto_logits




    def _class_aug(self,inputs,targets,alpha=20., mix_time=4):
        
        mixup_inputs = []
        mixup_targets = []
        for _ in range(mix_time):
            index = torch.randperm(inputs.shape[0])
            perm_inputs = inputs[index]
            perm_targets = targets[index]
            mask = perm_targets!= targets

            select_inputs = inputs[mask]
            select_targets = targets[mask]
            perm_inputs = perm_inputs[mask]
            perm_targets = perm_targets[mask]

            lams = np.random.beta(alpha,alpha,sum(mask))
            lams = np.where((lams<0.4)|(lams>0.6),0.5,lams)
            lams = torch.from_numpy(lams).to(self._device)[:,None,None,None].float()


            mixup_inputs.append(lams*select_inputs+(1-lams)*perm_inputs)
            mixup_targets.append(self._map_targets(select_targets,perm_targets))
        mixup_inputs = torch.cat(mixup_inputs,dim=0)
        mixup_targets = torch.cat(mixup_targets,dim=0)
        
        inputs = torch.cat([inputs,mixup_inputs],dim=0)
        targets = torch.cat([targets,mixup_targets],dim=0)
        return inputs,targets
    
    def _map_targets(self,select_targets,perm_targets):
        assert (select_targets != perm_targets).all()
        large_targets = torch.max(select_targets,perm_targets)-self._known_classes
        small_targets = torch.min(select_targets,perm_targets)-self._known_classes

        mixup_targets = large_targets*(large_targets-1) // 2 + small_targets + self._total_classes
        return mixup_targets
    def _compute_accuracy(self, model, loader):
        model.eval()
        correct, total = 0, 0
        for i, (_, inputs, targets) in enumerate(loader):
            inputs = inputs.to(self._device)
            with torch.no_grad():
                outputs = model(inputs)["logits"][:,:self._total_classes]
            predicts = torch.max(outputs, dim=1)[1]
            correct += (predicts.cpu() == targets).sum()
            total += len(targets)

        return np.around(tensor2numpy(correct)*100 / total, decimals=2)

    def _eval_cnn(self, loader):
        self._network.eval()
        y_pred, y_true = [], []
        for _, (_, inputs, targets) in enumerate(loader):
            inputs = inputs.to(self._device)
            with torch.no_grad():
                outputs = self._network(inputs)["logits"][:,:self._total_classes]
            predicts = torch.topk(outputs, k=self.topk, dim=1, largest=True, sorted=True)[1]  
            y_pred.append(predicts.cpu().numpy())
            y_true.append(targets.cpu().numpy())

        return np.concatenate(y_pred), np.concatenate(y_true)  
    
    def eval_task(self, save_conf=False):
        y_pred, y_true = self._eval_cnn(self.test_loader)
        cnn_accy = self._evaluate(y_pred, y_true)

        if hasattr(self, '_class_means'):
            y_pred, y_true = self._eval_nme(self.test_loader, self._class_means)
            nme_accy = self._evaluate(y_pred, y_true)
        elif hasattr(self, '_protos'):
            y_pred, y_true = self._eval_nme(self.test_loader, self._protos/np.linalg.norm(self._protos,axis=1)[:,None])
            nme_accy = self._evaluate(y_pred, y_true)            
        else:
            nme_accy = None
          
        return cnn_accy, nme_accy