Spaces:
Runtime error
Runtime error
File size: 11,980 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import logging
import numpy as np
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader,Dataset
from models.base import BaseLearner
from utils.inc_net import CosineIncrementalNet, FOSTERNet, IL2ANet, IncrementalNet
from utils.toolkit import count_parameters, target2onehot, tensor2numpy
EPSILON = 1e-8
class IL2A(BaseLearner):
def __init__(self, args):
super().__init__(args)
self.args = args
self._network = IL2ANet(args, False)
self._protos = []
self._covs = []
def after_task(self):
self._known_classes = self._total_classes
self._old_network = self._network.copy().freeze()
if hasattr(self._old_network,"module"):
self.old_network_module_ptr = self._old_network.module
else:
self.old_network_module_ptr = self._old_network
#self.save_checkpoint("{}_{}_{}".format(self.args["model_name"],self.args["init_cls"],self.args["increment"]))
def incremental_train(self, data_manager):
self.data_manager = data_manager
self._cur_task += 1
task_size = self.data_manager.get_task_size(self._cur_task)
self._total_classes = self._known_classes + task_size
self._network.update_fc(self._known_classes,self._total_classes,int((task_size-1)*task_size/2))
self._network_module_ptr = self._network
logging.info(
'Learning on {}-{}'.format(self._known_classes, self._total_classes))
logging.info('All params: {}'.format(count_parameters(self._network)))
logging.info('Trainable params: {}'.format(
count_parameters(self._network, True)))
train_dataset = data_manager.get_dataset(np.arange(self._known_classes, self._total_classes), source='train',
mode='train', appendent=self._get_memory())
self.train_loader = DataLoader(
train_dataset, batch_size=self.args["batch_size"], shuffle=True, num_workers=self.args["num_workers"], pin_memory=True)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes), source='test', mode='test')
self.test_loader = DataLoader(
test_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=self.args["num_workers"])
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
def _train(self, train_loader, test_loader):
resume = False
if self._cur_task in []:
self._network.load_state_dict(torch.load("{}_{}_{}_{}.pkl".format(self.args["model_name"],self.args["init_cls"],self.args["increment"],self._cur_task))["model_state_dict"])
resume = True
self._network.to(self._device)
if hasattr(self._network, "module"):
self._network_module_ptr = self._network.module
if not resume:
self._epoch_num = self.args["epochs"]
optimizer = torch.optim.Adam(self._network.parameters(), lr=self.args["lr"], weight_decay=self.args["weight_decay"])
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=self.args["step_size"], gamma=self.args["gamma"])
self._train_function(train_loader, test_loader, optimizer, scheduler)
self._build_protos()
def _build_protos(self):
with torch.no_grad():
for class_idx in range(self._known_classes, self._total_classes):
data, targets, idx_dataset = self.data_manager.get_dataset(np.arange(class_idx, class_idx+1), source='train',
mode='test', ret_data=True)
idx_loader = DataLoader(idx_dataset, batch_size=self.args["batch_size"], shuffle=False, num_workers=4)
vectors, _ = self._extract_vectors(idx_loader)
class_mean = np.mean(vectors, axis=0)
self._protos.append(class_mean)
cov = np.cov(vectors.T)
self._covs.append(cov)
def _train_function(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(self._epoch_num))
for _, epoch in enumerate(prog_bar):
self._network.train()
losses = 0.
losses_clf, losses_fkd, losses_proto = 0., 0., 0.
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(
self._device, non_blocking=True), targets.to(self._device, non_blocking=True)
inputs,targets = self._class_aug(inputs,targets)
logits, loss_clf, loss_fkd, loss_proto = self._compute_il2a_loss(inputs,targets)
loss = loss_clf + loss_fkd + loss_proto
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
losses_clf += loss_clf.item()
losses_fkd += loss_fkd.item()
losses_proto += loss_proto.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(
correct)*100 / total, decimals=2)
if epoch % 5 != 0:
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}'.format(
self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc)
else:
test_acc = self._compute_accuracy(self._network, test_loader)
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_fkd {:.3f}, Loss_proto {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format(
self._cur_task, epoch+1, self._epoch_num, losses/len(train_loader), losses_clf/len(train_loader), losses_fkd/len(train_loader), losses_proto/len(train_loader), train_acc, test_acc)
prog_bar.set_description(info)
logging.info(info)
def _compute_il2a_loss(self,inputs, targets):
logits = self._network(inputs)["logits"]
loss_clf = F.cross_entropy(logits/self.args["temp"], targets)
if self._cur_task == 0:
return logits, loss_clf, torch.tensor(0.), torch.tensor(0.)
features = self._network_module_ptr.extract_vector(inputs)
features_old = self.old_network_module_ptr.extract_vector(inputs)
loss_fkd = self.args["lambda_fkd"] * torch.dist(features, features_old, 2)
index = np.random.choice(range(self._known_classes),size=self.args["batch_size"],replace=True)
proto_features = np.array(self._protos)[index]
proto_targets = index
proto_features = torch.from_numpy(proto_features).float().to(self._device,non_blocking=True)
proto_targets = torch.from_numpy(proto_targets).to(self._device,non_blocking=True)
proto_logits = self._network_module_ptr.fc(proto_features)["logits"][:,:self._total_classes]
proto_logits = self._semantic_aug(proto_logits,proto_targets,self.args["ratio"])
loss_proto = self.args["lambda_proto"] * F.cross_entropy(proto_logits/self.args["temp"], proto_targets)
return logits, loss_clf, loss_fkd, loss_proto
def _semantic_aug(self,proto_logits,proto_targets,ratio):
# weight_fc = self._network_module_ptr.fc.weight.data[:self._total_classes] # don't use it ! data is not involved in back propagation
weight_fc = self._network_module_ptr.fc.weight[:self._total_classes]
N,C,D = self.args["batch_size"], self._total_classes, weight_fc.shape[1]
N_weight = weight_fc.expand(N,C,D) # NCD
N_target_weight = torch.gather(N_weight, 1, proto_targets[:,None,None].expand(N,C,D)) # NCD
N_v = N_weight-N_target_weight
N_cov = torch.from_numpy(np.array(self._covs))[proto_targets].float().to(self._device) # NDD
proto_logits = proto_logits + ratio/2* torch.diagonal(N_v @ N_cov @ N_v.permute(0,2,1),dim1=1,dim2=2) # NC
return proto_logits
def _class_aug(self,inputs,targets,alpha=20., mix_time=4):
mixup_inputs = []
mixup_targets = []
for _ in range(mix_time):
index = torch.randperm(inputs.shape[0])
perm_inputs = inputs[index]
perm_targets = targets[index]
mask = perm_targets!= targets
select_inputs = inputs[mask]
select_targets = targets[mask]
perm_inputs = perm_inputs[mask]
perm_targets = perm_targets[mask]
lams = np.random.beta(alpha,alpha,sum(mask))
lams = np.where((lams<0.4)|(lams>0.6),0.5,lams)
lams = torch.from_numpy(lams).to(self._device)[:,None,None,None].float()
mixup_inputs.append(lams*select_inputs+(1-lams)*perm_inputs)
mixup_targets.append(self._map_targets(select_targets,perm_targets))
mixup_inputs = torch.cat(mixup_inputs,dim=0)
mixup_targets = torch.cat(mixup_targets,dim=0)
inputs = torch.cat([inputs,mixup_inputs],dim=0)
targets = torch.cat([targets,mixup_targets],dim=0)
return inputs,targets
def _map_targets(self,select_targets,perm_targets):
assert (select_targets != perm_targets).all()
large_targets = torch.max(select_targets,perm_targets)-self._known_classes
small_targets = torch.min(select_targets,perm_targets)-self._known_classes
mixup_targets = large_targets*(large_targets-1) // 2 + small_targets + self._total_classes
return mixup_targets
def _compute_accuracy(self, model, loader):
model.eval()
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(loader):
inputs = inputs.to(self._device)
with torch.no_grad():
outputs = model(inputs)["logits"][:,:self._total_classes]
predicts = torch.max(outputs, dim=1)[1]
correct += (predicts.cpu() == targets).sum()
total += len(targets)
return np.around(tensor2numpy(correct)*100 / total, decimals=2)
def _eval_cnn(self, loader):
self._network.eval()
y_pred, y_true = [], []
for _, (_, inputs, targets) in enumerate(loader):
inputs = inputs.to(self._device)
with torch.no_grad():
outputs = self._network(inputs)["logits"][:,:self._total_classes]
predicts = torch.topk(outputs, k=self.topk, dim=1, largest=True, sorted=True)[1]
y_pred.append(predicts.cpu().numpy())
y_true.append(targets.cpu().numpy())
return np.concatenate(y_pred), np.concatenate(y_true)
def eval_task(self, save_conf=False):
y_pred, y_true = self._eval_cnn(self.test_loader)
cnn_accy = self._evaluate(y_pred, y_true)
if hasattr(self, '_class_means'):
y_pred, y_true = self._eval_nme(self.test_loader, self._class_means)
nme_accy = self._evaluate(y_pred, y_true)
elif hasattr(self, '_protos'):
y_pred, y_true = self._eval_nme(self.test_loader, self._protos/np.linalg.norm(self._protos,axis=1)[:,None])
nme_accy = self._evaluate(y_pred, y_true)
else:
nme_accy = None
return cnn_accy, nme_accy
|