Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -18,11 +18,11 @@ ENABLE_DETAILED_LOGGING = True
|
|
18 |
if ENABLE_DETAILED_LOGGING:
|
19 |
# Create formatter
|
20 |
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
-
|
22 |
# Setup console handler
|
23 |
console_handler = logging.StreamHandler()
|
24 |
console_handler.setFormatter(formatter)
|
25 |
-
|
26 |
# Setup rotating file handler (7 days, daily rotation)
|
27 |
file_handler = logging.handlers.TimedRotatingFileHandler(
|
28 |
'agent.log',
|
@@ -32,7 +32,7 @@ if ENABLE_DETAILED_LOGGING:
|
|
32 |
encoding='utf-8'
|
33 |
)
|
34 |
file_handler.setFormatter(formatter)
|
35 |
-
|
36 |
# Configure root logger
|
37 |
logging.basicConfig(
|
38 |
level=logging.INFO,
|
@@ -51,8 +51,6 @@ llm_model = os.environ.get('model')
|
|
51 |
|
52 |
# Tavily API configuration
|
53 |
tavily_key = os.environ.get('tavily_key', '')
|
54 |
-
if tavily_key:
|
55 |
-
os.environ['TAVILY_API_KEY'] = tavily_key
|
56 |
|
57 |
# Tavily search tool integration
|
58 |
|
@@ -64,7 +62,7 @@ class ReactAgentChat:
|
|
64 |
self.model = model
|
65 |
self.agent = None
|
66 |
self._setup_agent()
|
67 |
-
|
68 |
def _setup_agent(self):
|
69 |
"""Initialize the LangGraph ReAct agent"""
|
70 |
try:
|
@@ -72,7 +70,7 @@ class ReactAgentChat:
|
|
72 |
logger.info(f"=== SETTING UP AGENT ===")
|
73 |
logger.info(f"LLM URL: http://{self.ip}:{self.port}/v1")
|
74 |
logger.info(f"Model: {self.model}")
|
75 |
-
|
76 |
# Create OpenAI-compatible model
|
77 |
llm = ChatOpenAI(
|
78 |
base_url=f"http://{self.ip}:{self.port}/v1",
|
@@ -82,7 +80,7 @@ class ReactAgentChat:
|
|
82 |
)
|
83 |
if ENABLE_DETAILED_LOGGING:
|
84 |
logger.info("LLM created successfully")
|
85 |
-
|
86 |
# Define tools - use Tavily search API with graceful error handling
|
87 |
if tavily_key:
|
88 |
if ENABLE_DETAILED_LOGGING:
|
@@ -94,6 +92,7 @@ class ReactAgentChat:
|
|
94 |
"""Search the web for current information about any topic."""
|
95 |
try:
|
96 |
tavily_tool = TavilySearch(
|
|
|
97 |
max_results=5,
|
98 |
topic="general",
|
99 |
include_answer=True,
|
@@ -107,7 +106,7 @@ class ReactAgentChat:
|
|
107 |
error_str = str(e).lower()
|
108 |
if ENABLE_DETAILED_LOGGING:
|
109 |
logger.error(f"Tavily search failed for query '{query}': {e}")
|
110 |
-
|
111 |
# Check for rate limit or quota issues
|
112 |
if any(keyword in error_str for keyword in ['rate limit', 'quota', 'limit exceeded', 'usage limit', 'billing']):
|
113 |
if ENABLE_DETAILED_LOGGING:
|
@@ -117,7 +116,7 @@ class ReactAgentChat:
|
|
117 |
if ENABLE_DETAILED_LOGGING:
|
118 |
logger.error(f"Tavily API error: {e}")
|
119 |
return "I can't search the web right now."
|
120 |
-
|
121 |
search_tool = web_search
|
122 |
if ENABLE_DETAILED_LOGGING:
|
123 |
logger.info("Tavily search tool wrapper created successfully")
|
@@ -140,49 +139,49 @@ class ReactAgentChat:
|
|
140 |
logger.error("Search attempted but no Tavily API key configured")
|
141 |
return "I can't search the web right now."
|
142 |
search_tool = no_search
|
143 |
-
|
144 |
tools = [search_tool]
|
145 |
if ENABLE_DETAILED_LOGGING:
|
146 |
logger.info(f"Tools defined: {[tool.name for tool in tools]}")
|
147 |
-
|
148 |
# Bind tools to the model
|
149 |
model_with_tools = llm.bind_tools(tools)
|
150 |
if ENABLE_DETAILED_LOGGING:
|
151 |
logger.info("Tools bound to model")
|
152 |
-
|
153 |
# Create the ReAct agent
|
154 |
self.agent = create_react_agent(model_with_tools, tools)
|
155 |
if ENABLE_DETAILED_LOGGING:
|
156 |
logger.info("ReAct agent created successfully")
|
157 |
-
|
158 |
except Exception as e:
|
159 |
logger.error(f"=== AGENT SETUP ERROR ===")
|
160 |
logger.error(f"Failed to setup agent: {e}")
|
161 |
import traceback
|
162 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
163 |
raise e
|
164 |
-
|
165 |
def update_config(self, ip: str, port: str, api_key: str, model: str):
|
166 |
"""Update LLM configuration"""
|
167 |
-
if (ip != self.ip or port != self.port or
|
168 |
api_key != self.api_key or model != self.model):
|
169 |
self.ip = ip
|
170 |
self.port = port
|
171 |
self.api_key = api_key
|
172 |
self.model = model
|
173 |
self._setup_agent()
|
174 |
-
|
175 |
def chat(self, message: str, history: List[List[str]]) -> str:
|
176 |
"""Generate chat response using ReAct agent"""
|
177 |
try:
|
178 |
if not self.agent:
|
179 |
return "Error: Agent not initialized"
|
180 |
-
|
181 |
if ENABLE_DETAILED_LOGGING:
|
182 |
logger.info(f"=== USER INPUT ===")
|
183 |
logger.info(f"Message: {message}")
|
184 |
logger.info(f"History length: {len(history)}")
|
185 |
-
|
186 |
# Convert history to messages for context handling
|
187 |
messages = []
|
188 |
for user_msg, assistant_msg in history:
|
@@ -190,33 +189,33 @@ class ReactAgentChat:
|
|
190 |
if assistant_msg: # Only add if assistant responded
|
191 |
from langchain_core.messages import AIMessage
|
192 |
messages.append(AIMessage(content=assistant_msg))
|
193 |
-
|
194 |
# Add current message
|
195 |
messages.append(HumanMessage(content=message))
|
196 |
-
|
197 |
# Invoke the agent
|
198 |
if ENABLE_DETAILED_LOGGING:
|
199 |
logger.info(f"=== INVOKING AGENT ===")
|
200 |
logger.info(f"Total messages in history: {len(messages)}")
|
201 |
response = self.agent.invoke({"messages": messages})
|
202 |
-
|
203 |
if ENABLE_DETAILED_LOGGING:
|
204 |
logger.info(f"=== AGENT RESPONSE ===")
|
205 |
logger.info(f"Full response: {response}")
|
206 |
logger.info(f"Number of messages: {len(response.get('messages', []))}")
|
207 |
-
|
208 |
# Log each message in the response
|
209 |
for i, msg in enumerate(response.get("messages", [])):
|
210 |
logger.info(f"Message {i}: Type={type(msg).__name__}, Content={getattr(msg, 'content', 'No content')}")
|
211 |
-
|
212 |
# Extract the final response
|
213 |
final_message = response["messages"][-1].content
|
214 |
if ENABLE_DETAILED_LOGGING:
|
215 |
logger.info(f"=== FINAL MESSAGE ===")
|
216 |
logger.info(f"Final message: {final_message}")
|
217 |
-
|
218 |
return final_message
|
219 |
-
|
220 |
except Exception as e:
|
221 |
error_msg = f"Agent error: {str(e)}"
|
222 |
logger.error(f"=== AGENT ERROR ===")
|
@@ -229,25 +228,25 @@ class ReactAgentChat:
|
|
229 |
# Global agent instance
|
230 |
react_agent = ReactAgentChat(llm_ip, llm_port, llm_key, llm_model)
|
231 |
|
232 |
-
def generate_response(message: str, history: List[List[str]], system_prompt: str,
|
233 |
max_tokens: int, ip: str, port: str, api_key: str, model: str):
|
234 |
"""Generate response using ReAct agent"""
|
235 |
global react_agent
|
236 |
-
|
237 |
try:
|
238 |
# Update agent configuration if changed
|
239 |
react_agent.update_config(ip, port, api_key, model)
|
240 |
-
|
241 |
# Generate response
|
242 |
response = react_agent.chat(message, history)
|
243 |
-
|
244 |
# Stream the response word by word for better UX
|
245 |
words = response.split()
|
246 |
current_response = ""
|
247 |
for word in words:
|
248 |
current_response += word + " "
|
249 |
yield current_response.strip()
|
250 |
-
|
251 |
except Exception as e:
|
252 |
error_msg = f"Error: {str(e)}"
|
253 |
logger.error(error_msg)
|
@@ -261,31 +260,32 @@ chatbot = gr.ChatInterface(
|
|
261 |
None,
|
262 |
"https://cdn-avatars.huggingface.co/v1/production/uploads/64e6d37e02dee9bcb9d9fa18/o_HhUnXb_PgyYlqJ6gfEO.png"
|
263 |
],
|
264 |
-
height="64vh"
|
|
|
265 |
),
|
266 |
additional_inputs=[
|
267 |
gr.Textbox(
|
268 |
-
"You are a helpful AI assistant with web search capabilities.",
|
269 |
label="System Prompt",
|
270 |
lines=2
|
271 |
),
|
272 |
-
gr.Slider(50, 2048, label="Max Tokens", value=512,
|
273 |
info="Maximum number of tokens in the response"),
|
274 |
-
gr.Textbox(llm_ip, label="LLM IP Address",
|
275 |
info="IP address of the OpenAI-compatible LLM server"),
|
276 |
-
gr.Textbox(llm_port, label="LLM Port",
|
277 |
info="Port of the LLM server"),
|
278 |
gr.Textbox(llm_key, label="API Key", type="password",
|
279 |
info="API key for the LLM server"),
|
280 |
-
gr.Textbox(llm_model, label="Model Name",
|
281 |
info="Name of the model to use"),
|
282 |
],
|
283 |
title="🤖 LangGraph ReAct Agent with DuckDuckGo Search",
|
284 |
description="Chat with a LangGraph ReAct agent that can search the web using DuckDuckGo. Ask about current events, research topics, or any questions that require up-to-date information!",
|
285 |
theme="finlaymacklon/smooth_slate",
|
286 |
submit_btn="Send",
|
287 |
-
|
288 |
-
|
289 |
clear_btn="🗑️ Clear Chat"
|
290 |
)
|
291 |
|
|
|
18 |
if ENABLE_DETAILED_LOGGING:
|
19 |
# Create formatter
|
20 |
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
+
|
22 |
# Setup console handler
|
23 |
console_handler = logging.StreamHandler()
|
24 |
console_handler.setFormatter(formatter)
|
25 |
+
|
26 |
# Setup rotating file handler (7 days, daily rotation)
|
27 |
file_handler = logging.handlers.TimedRotatingFileHandler(
|
28 |
'agent.log',
|
|
|
32 |
encoding='utf-8'
|
33 |
)
|
34 |
file_handler.setFormatter(formatter)
|
35 |
+
|
36 |
# Configure root logger
|
37 |
logging.basicConfig(
|
38 |
level=logging.INFO,
|
|
|
51 |
|
52 |
# Tavily API configuration
|
53 |
tavily_key = os.environ.get('tavily_key', '')
|
|
|
|
|
54 |
|
55 |
# Tavily search tool integration
|
56 |
|
|
|
62 |
self.model = model
|
63 |
self.agent = None
|
64 |
self._setup_agent()
|
65 |
+
|
66 |
def _setup_agent(self):
|
67 |
"""Initialize the LangGraph ReAct agent"""
|
68 |
try:
|
|
|
70 |
logger.info(f"=== SETTING UP AGENT ===")
|
71 |
logger.info(f"LLM URL: http://{self.ip}:{self.port}/v1")
|
72 |
logger.info(f"Model: {self.model}")
|
73 |
+
|
74 |
# Create OpenAI-compatible model
|
75 |
llm = ChatOpenAI(
|
76 |
base_url=f"http://{self.ip}:{self.port}/v1",
|
|
|
80 |
)
|
81 |
if ENABLE_DETAILED_LOGGING:
|
82 |
logger.info("LLM created successfully")
|
83 |
+
|
84 |
# Define tools - use Tavily search API with graceful error handling
|
85 |
if tavily_key:
|
86 |
if ENABLE_DETAILED_LOGGING:
|
|
|
92 |
"""Search the web for current information about any topic."""
|
93 |
try:
|
94 |
tavily_tool = TavilySearch(
|
95 |
+
api_key=tavily_key,
|
96 |
max_results=5,
|
97 |
topic="general",
|
98 |
include_answer=True,
|
|
|
106 |
error_str = str(e).lower()
|
107 |
if ENABLE_DETAILED_LOGGING:
|
108 |
logger.error(f"Tavily search failed for query '{query}': {e}")
|
109 |
+
|
110 |
# Check for rate limit or quota issues
|
111 |
if any(keyword in error_str for keyword in ['rate limit', 'quota', 'limit exceeded', 'usage limit', 'billing']):
|
112 |
if ENABLE_DETAILED_LOGGING:
|
|
|
116 |
if ENABLE_DETAILED_LOGGING:
|
117 |
logger.error(f"Tavily API error: {e}")
|
118 |
return "I can't search the web right now."
|
119 |
+
|
120 |
search_tool = web_search
|
121 |
if ENABLE_DETAILED_LOGGING:
|
122 |
logger.info("Tavily search tool wrapper created successfully")
|
|
|
139 |
logger.error("Search attempted but no Tavily API key configured")
|
140 |
return "I can't search the web right now."
|
141 |
search_tool = no_search
|
142 |
+
|
143 |
tools = [search_tool]
|
144 |
if ENABLE_DETAILED_LOGGING:
|
145 |
logger.info(f"Tools defined: {[tool.name for tool in tools]}")
|
146 |
+
|
147 |
# Bind tools to the model
|
148 |
model_with_tools = llm.bind_tools(tools)
|
149 |
if ENABLE_DETAILED_LOGGING:
|
150 |
logger.info("Tools bound to model")
|
151 |
+
|
152 |
# Create the ReAct agent
|
153 |
self.agent = create_react_agent(model_with_tools, tools)
|
154 |
if ENABLE_DETAILED_LOGGING:
|
155 |
logger.info("ReAct agent created successfully")
|
156 |
+
|
157 |
except Exception as e:
|
158 |
logger.error(f"=== AGENT SETUP ERROR ===")
|
159 |
logger.error(f"Failed to setup agent: {e}")
|
160 |
import traceback
|
161 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
162 |
raise e
|
163 |
+
|
164 |
def update_config(self, ip: str, port: str, api_key: str, model: str):
|
165 |
"""Update LLM configuration"""
|
166 |
+
if (ip != self.ip or port != self.port or
|
167 |
api_key != self.api_key or model != self.model):
|
168 |
self.ip = ip
|
169 |
self.port = port
|
170 |
self.api_key = api_key
|
171 |
self.model = model
|
172 |
self._setup_agent()
|
173 |
+
|
174 |
def chat(self, message: str, history: List[List[str]]) -> str:
|
175 |
"""Generate chat response using ReAct agent"""
|
176 |
try:
|
177 |
if not self.agent:
|
178 |
return "Error: Agent not initialized"
|
179 |
+
|
180 |
if ENABLE_DETAILED_LOGGING:
|
181 |
logger.info(f"=== USER INPUT ===")
|
182 |
logger.info(f"Message: {message}")
|
183 |
logger.info(f"History length: {len(history)}")
|
184 |
+
|
185 |
# Convert history to messages for context handling
|
186 |
messages = []
|
187 |
for user_msg, assistant_msg in history:
|
|
|
189 |
if assistant_msg: # Only add if assistant responded
|
190 |
from langchain_core.messages import AIMessage
|
191 |
messages.append(AIMessage(content=assistant_msg))
|
192 |
+
|
193 |
# Add current message
|
194 |
messages.append(HumanMessage(content=message))
|
195 |
+
|
196 |
# Invoke the agent
|
197 |
if ENABLE_DETAILED_LOGGING:
|
198 |
logger.info(f"=== INVOKING AGENT ===")
|
199 |
logger.info(f"Total messages in history: {len(messages)}")
|
200 |
response = self.agent.invoke({"messages": messages})
|
201 |
+
|
202 |
if ENABLE_DETAILED_LOGGING:
|
203 |
logger.info(f"=== AGENT RESPONSE ===")
|
204 |
logger.info(f"Full response: {response}")
|
205 |
logger.info(f"Number of messages: {len(response.get('messages', []))}")
|
206 |
+
|
207 |
# Log each message in the response
|
208 |
for i, msg in enumerate(response.get("messages", [])):
|
209 |
logger.info(f"Message {i}: Type={type(msg).__name__}, Content={getattr(msg, 'content', 'No content')}")
|
210 |
+
|
211 |
# Extract the final response
|
212 |
final_message = response["messages"][-1].content
|
213 |
if ENABLE_DETAILED_LOGGING:
|
214 |
logger.info(f"=== FINAL MESSAGE ===")
|
215 |
logger.info(f"Final message: {final_message}")
|
216 |
+
|
217 |
return final_message
|
218 |
+
|
219 |
except Exception as e:
|
220 |
error_msg = f"Agent error: {str(e)}"
|
221 |
logger.error(f"=== AGENT ERROR ===")
|
|
|
228 |
# Global agent instance
|
229 |
react_agent = ReactAgentChat(llm_ip, llm_port, llm_key, llm_model)
|
230 |
|
231 |
+
def generate_response(message: str, history: List[List[str]], system_prompt: str,
|
232 |
max_tokens: int, ip: str, port: str, api_key: str, model: str):
|
233 |
"""Generate response using ReAct agent"""
|
234 |
global react_agent
|
235 |
+
|
236 |
try:
|
237 |
# Update agent configuration if changed
|
238 |
react_agent.update_config(ip, port, api_key, model)
|
239 |
+
|
240 |
# Generate response
|
241 |
response = react_agent.chat(message, history)
|
242 |
+
|
243 |
# Stream the response word by word for better UX
|
244 |
words = response.split()
|
245 |
current_response = ""
|
246 |
for word in words:
|
247 |
current_response += word + " "
|
248 |
yield current_response.strip()
|
249 |
+
|
250 |
except Exception as e:
|
251 |
error_msg = f"Error: {str(e)}"
|
252 |
logger.error(error_msg)
|
|
|
260 |
None,
|
261 |
"https://cdn-avatars.huggingface.co/v1/production/uploads/64e6d37e02dee9bcb9d9fa18/o_HhUnXb_PgyYlqJ6gfEO.png"
|
262 |
],
|
263 |
+
height="64vh",
|
264 |
+
type="messages"
|
265 |
),
|
266 |
additional_inputs=[
|
267 |
gr.Textbox(
|
268 |
+
"You are a helpful AI assistant with web search capabilities.",
|
269 |
label="System Prompt",
|
270 |
lines=2
|
271 |
),
|
272 |
+
gr.Slider(50, 2048, label="Max Tokens", value=512,
|
273 |
info="Maximum number of tokens in the response"),
|
274 |
+
gr.Textbox(llm_ip, label="LLM IP Address",
|
275 |
info="IP address of the OpenAI-compatible LLM server"),
|
276 |
+
gr.Textbox(llm_port, label="LLM Port",
|
277 |
info="Port of the LLM server"),
|
278 |
gr.Textbox(llm_key, label="API Key", type="password",
|
279 |
info="API key for the LLM server"),
|
280 |
+
gr.Textbox(llm_model, label="Model Name",
|
281 |
info="Name of the model to use"),
|
282 |
],
|
283 |
title="🤖 LangGraph ReAct Agent with DuckDuckGo Search",
|
284 |
description="Chat with a LangGraph ReAct agent that can search the web using DuckDuckGo. Ask about current events, research topics, or any questions that require up-to-date information!",
|
285 |
theme="finlaymacklon/smooth_slate",
|
286 |
submit_btn="Send",
|
287 |
+
retry_btn="🔄 Regenerate Response",
|
288 |
+
undo_btn="↩ Delete Previous",
|
289 |
clear_btn="🗑️ Clear Chat"
|
290 |
)
|
291 |
|