Spaces:
Runtime error
Runtime error
Reverting to Jul19 Commit
Browse files
app.py
CHANGED
|
@@ -1,10 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
nltk.download('punkt')
|
| 3 |
nltk.download('stopwords')
|
| 4 |
nltk.download('brown')
|
|
|
|
| 5 |
nltk.download('wordnet')
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
st.set_page_config(
|
| 10 |
page_icon='cyclone',
|
|
@@ -15,19 +55,62 @@ st.set_page_config(
|
|
| 15 |
}
|
| 16 |
)
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
from data_export import export_to_csv, export_to_pdf
|
| 23 |
-
from feedback import collect_feedback, analyze_feedback, export_feedback_data
|
| 24 |
-
from utils import get_session_id, initialize_state, get_state, set_state, display_info, QuestionGenerationError, entity_linking
|
| 25 |
-
import asyncio
|
| 26 |
-
import time
|
| 27 |
-
import pandas as pd
|
| 28 |
-
from data_export import send_email_with_attachment
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
with st.sidebar:
|
| 33 |
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
|
|
@@ -35,8 +118,514 @@ if select_model == "T5-large":
|
|
| 35 |
modelname = "DevBM/t5-large-squad"
|
| 36 |
elif select_model == "T5-small":
|
| 37 |
modelname = "AneriThakkar/flan-t5-small-finetuned"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def main():
|
|
|
|
| 40 |
st.title(":blue[Question Generator System]")
|
| 41 |
session_id = get_session_id()
|
| 42 |
state = initialize_state(session_id)
|
|
@@ -44,18 +633,18 @@ def main():
|
|
| 44 |
st.session_state.feedback_data = []
|
| 45 |
|
| 46 |
with st.sidebar:
|
| 47 |
-
show_info = st.toggle('Show Info',
|
| 48 |
if show_info:
|
| 49 |
display_info()
|
| 50 |
st.subheader("Customization Options")
|
| 51 |
# Customization options
|
| 52 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
| 53 |
with st.expander("Choose the Additional Elements to show"):
|
| 54 |
-
show_context = st.checkbox("Context",
|
| 55 |
show_answer = st.checkbox("Answer",True)
|
| 56 |
-
show_options = st.checkbox("Options",
|
| 57 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
| 58 |
-
show_qa_scores = st.checkbox("QA Score",
|
| 59 |
show_blank_question = st.checkbox("Fill in the Blank Questions",True)
|
| 60 |
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
|
| 61 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
|
@@ -81,15 +670,15 @@ def main():
|
|
| 81 |
text = clean_text(text)
|
| 82 |
with st.expander("Show text"):
|
| 83 |
st.write(text)
|
| 84 |
-
# st.text(text)
|
| 85 |
generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
|
| 86 |
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
|
| 87 |
|
|
|
|
| 88 |
if generate_questions_button and text:
|
| 89 |
start_time = time.time()
|
| 90 |
with st.spinner("Generating questions..."):
|
| 91 |
try:
|
| 92 |
-
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords
|
| 93 |
if not state['generated_questions']:
|
| 94 |
st.warning("No questions were generated. The text might be too short or lack suitable content.")
|
| 95 |
else:
|
|
@@ -150,16 +739,12 @@ def main():
|
|
| 150 |
# Export buttons
|
| 151 |
# if st.session_state.generated_questions:
|
| 152 |
if state['generated_questions']:
|
| 153 |
-
with st.sidebar:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
pdf_data = export_to_pdf(state['generated_questions'])
|
| 160 |
-
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
|
| 161 |
-
except Exception as e:
|
| 162 |
-
st.error(f"Error exporting CSV: {e}")
|
| 163 |
|
| 164 |
with st.expander("View Visualizations"):
|
| 165 |
questions = [tpl['question'] for tpl in state['generated_questions']]
|
|
@@ -170,6 +755,7 @@ def main():
|
|
| 170 |
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
|
| 171 |
st.line_chart(overall_scores)
|
| 172 |
|
|
|
|
| 173 |
# View Feedback Statistics
|
| 174 |
with st.expander("View Feedback Statistics"):
|
| 175 |
analyze_feedback()
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 3 |
+
import spacy
|
| 4 |
import nltk
|
| 5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 6 |
+
from rake_nltk import Rake
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from fpdf import FPDF
|
| 9 |
+
import wikipediaapi
|
| 10 |
+
from functools import lru_cache
|
| 11 |
nltk.download('punkt')
|
| 12 |
nltk.download('stopwords')
|
| 13 |
nltk.download('brown')
|
| 14 |
+
from nltk.tokenize import sent_tokenize
|
| 15 |
nltk.download('wordnet')
|
| 16 |
+
from nltk.corpus import wordnet
|
| 17 |
+
import random
|
| 18 |
+
import sense2vec
|
| 19 |
+
from wordcloud import WordCloud
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import json
|
| 22 |
+
import os
|
| 23 |
+
from sentence_transformers import SentenceTransformer, util
|
| 24 |
+
import textstat
|
| 25 |
+
from spellchecker import SpellChecker
|
| 26 |
+
from transformers import pipeline
|
| 27 |
+
import re
|
| 28 |
+
import pymupdf
|
| 29 |
+
import uuid
|
| 30 |
+
import time
|
| 31 |
+
import asyncio
|
| 32 |
+
import aiohttp
|
| 33 |
+
from datetime import datetime
|
| 34 |
+
import base64
|
| 35 |
+
from io import BytesIO
|
| 36 |
+
# '-----------------'
|
| 37 |
+
import smtplib
|
| 38 |
+
from email.mime.multipart import MIMEMultipart
|
| 39 |
+
from email.mime.text import MIMEText
|
| 40 |
+
from email.mime.base import MIMEBase
|
| 41 |
+
from email.mime.application import MIMEApplication
|
| 42 |
+
from email import encoders
|
| 43 |
+
# '------------------'
|
| 44 |
+
from gliner import GLiNER
|
| 45 |
+
# -------------------
|
| 46 |
|
| 47 |
+
print("***************************************************************")
|
| 48 |
|
| 49 |
st.set_page_config(
|
| 50 |
page_icon='cyclone',
|
|
|
|
| 55 |
}
|
| 56 |
)
|
| 57 |
|
| 58 |
+
st.set_option('deprecation.showPyplotGlobalUse',False)
|
| 59 |
|
| 60 |
+
class QuestionGenerationError(Exception):
|
| 61 |
+
"""Custom exception for question generation errors."""
|
| 62 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
|
| 65 |
+
# Initialize Wikipedia API with a user agent
|
| 66 |
+
user_agent = 'QGen/1.2'
|
| 67 |
+
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
| 68 |
+
|
| 69 |
+
def get_session_id():
|
| 70 |
+
if 'session_id' not in st.session_state:
|
| 71 |
+
st.session_state.session_id = str(uuid.uuid4())
|
| 72 |
+
return st.session_state.session_id
|
| 73 |
+
|
| 74 |
+
def initialize_state(session_id):
|
| 75 |
+
if 'session_states' not in st.session_state:
|
| 76 |
+
st.session_state.session_states = {}
|
| 77 |
+
|
| 78 |
+
if session_id not in st.session_state.session_states:
|
| 79 |
+
st.session_state.session_states[session_id] = {
|
| 80 |
+
'generated_questions': [],
|
| 81 |
+
# add other state variables as needed
|
| 82 |
+
}
|
| 83 |
+
return st.session_state.session_states[session_id]
|
| 84 |
+
|
| 85 |
+
def get_state(session_id):
|
| 86 |
+
return st.session_state.session_states[session_id]
|
| 87 |
+
|
| 88 |
+
def set_state(session_id, key, value):
|
| 89 |
+
st.session_state.session_states[session_id][key] = value
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@st.cache_resource
|
| 93 |
+
def load_model(modelname):
|
| 94 |
+
model_name = modelname
|
| 95 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 96 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 97 |
+
return model, tokenizer
|
| 98 |
+
|
| 99 |
+
# Load Spacy Model
|
| 100 |
+
@st.cache_resource
|
| 101 |
+
def load_nlp_models():
|
| 102 |
+
nlp = spacy.load("en_core_web_md")
|
| 103 |
+
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
| 104 |
+
return nlp, s2v
|
| 105 |
+
|
| 106 |
+
# Load Quality Assurance Models
|
| 107 |
+
@st.cache_resource
|
| 108 |
+
def load_qa_models():
|
| 109 |
+
# Initialize BERT model for sentence similarity
|
| 110 |
+
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 111 |
+
|
| 112 |
+
spell = SpellChecker()
|
| 113 |
+
return similarity_model, spell
|
| 114 |
|
| 115 |
with st.sidebar:
|
| 116 |
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
|
|
|
|
| 118 |
modelname = "DevBM/t5-large-squad"
|
| 119 |
elif select_model == "T5-small":
|
| 120 |
modelname = "AneriThakkar/flan-t5-small-finetuned"
|
| 121 |
+
nlp, s2v = load_nlp_models()
|
| 122 |
+
similarity_model, spell = load_qa_models()
|
| 123 |
+
context_model = similarity_model
|
| 124 |
+
model, tokenizer = load_model(modelname)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
# Info Section
|
| 128 |
+
def display_info():
|
| 129 |
+
st.sidebar.title("Information")
|
| 130 |
+
st.sidebar.markdown("""
|
| 131 |
+
### Question Generator System
|
| 132 |
+
This system is designed to generate questions based on the provided context. It uses various NLP techniques and models to:
|
| 133 |
+
- Extract keywords from the text
|
| 134 |
+
- Map keywords to sentences
|
| 135 |
+
- Generate questions
|
| 136 |
+
- Provide multiple choice options
|
| 137 |
+
- Assess the quality of generated questions
|
| 138 |
+
#### Key Features:
|
| 139 |
+
- **Keyword Extraction:** Combines RAKE, TF-IDF, and spaCy for comprehensive keyword extraction.
|
| 140 |
+
- **Question Generation:** Utilizes a pre-trained T5 model for generating questions.
|
| 141 |
+
- **Options Generation:** Creates contextually relevant multiple-choice options.
|
| 142 |
+
- **Question Assessment:** Scores questions based on relevance, complexity, and spelling correctness.
|
| 143 |
+
- **Feedback Collection:** Allows users to rate the generated questions and provides statistics on feedback.
|
| 144 |
+
#### Customization Options:
|
| 145 |
+
- Number of beams for question generation
|
| 146 |
+
- Context window size for mapping keywords to sentences
|
| 147 |
+
- Number of questions to generate
|
| 148 |
+
- Additional display elements (context, answer, options, entity link, QA scores)
|
| 149 |
+
#### Outputs:
|
| 150 |
+
- Generated questions with multiple-choice options
|
| 151 |
+
- Download options for CSV and PDF formats
|
| 152 |
+
- Visualization of overall scores
|
| 153 |
+
""")
|
| 154 |
+
|
| 155 |
+
def get_pdf_text(pdf_file):
|
| 156 |
+
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
|
| 157 |
+
text = ""
|
| 158 |
+
for page_num in range(doc.page_count):
|
| 159 |
+
page = doc.load_page(page_num)
|
| 160 |
+
text += page.get_text()
|
| 161 |
+
return text
|
| 162 |
+
|
| 163 |
+
def save_feedback_og(question, answer, rating, options, context):
|
| 164 |
+
feedback_file = 'question_feedback.json'
|
| 165 |
+
if os.path.exists(feedback_file):
|
| 166 |
+
with open(feedback_file, 'r') as f:
|
| 167 |
+
feedback_data = json.load(f)
|
| 168 |
+
else:
|
| 169 |
+
feedback_data = []
|
| 170 |
+
tpl = {
|
| 171 |
+
'question' : question,
|
| 172 |
+
'answer' : answer,
|
| 173 |
+
'context' : context,
|
| 174 |
+
'options' : options,
|
| 175 |
+
'rating' : rating,
|
| 176 |
+
}
|
| 177 |
+
# feedback_data[question] = rating
|
| 178 |
+
feedback_data.append(tpl)
|
| 179 |
+
print(feedback_data)
|
| 180 |
+
with open(feedback_file, 'w') as f:
|
| 181 |
+
json.dump(feedback_data, f)
|
| 182 |
+
|
| 183 |
+
return feedback_file
|
| 184 |
+
|
| 185 |
+
# -----------------------------------------------------------------------------------------
|
| 186 |
+
def send_email_with_attachment(email_subject, email_body, recipient_emails, sender_email, sender_password, attachment):
|
| 187 |
+
smtp_server = "smtp.gmail.com" # Replace with your SMTP server
|
| 188 |
+
smtp_port = 587 # Replace with your SMTP port
|
| 189 |
+
|
| 190 |
+
# Create the email message
|
| 191 |
+
message = MIMEMultipart()
|
| 192 |
+
message['From'] = sender_email
|
| 193 |
+
message['To'] = ", ".join(recipient_emails)
|
| 194 |
+
message['Subject'] = email_subject
|
| 195 |
+
message.attach(MIMEText(email_body, 'plain'))
|
| 196 |
+
|
| 197 |
+
# Attach the feedback data if available
|
| 198 |
+
if attachment:
|
| 199 |
+
attachment_part = MIMEApplication(attachment.getvalue(), Name="feedback_data.json")
|
| 200 |
+
attachment_part['Content-Disposition'] = f'attachment; filename="feedback_data.json"'
|
| 201 |
+
message.attach(attachment_part)
|
| 202 |
+
|
| 203 |
+
# Send the email
|
| 204 |
+
try:
|
| 205 |
+
with smtplib.SMTP(smtp_server, smtp_port) as server:
|
| 206 |
+
server.starttls()
|
| 207 |
+
print(sender_email)
|
| 208 |
+
print(sender_password)
|
| 209 |
+
server.login(sender_email, sender_password)
|
| 210 |
+
text = message.as_string()
|
| 211 |
+
server.sendmail(sender_email, recipient_emails, text)
|
| 212 |
+
return True
|
| 213 |
+
except Exception as e:
|
| 214 |
+
st.error(f"Failed to send email: {str(e)}")
|
| 215 |
+
return False
|
| 216 |
+
# ----------------------------------------------------------------------------------
|
| 217 |
+
|
| 218 |
+
def collect_feedback(i,question, answer, context, options):
|
| 219 |
+
st.write("Please provide feedback for this question:")
|
| 220 |
+
edited_question = st.text_input("Enter improved question",value=question,key=f'fdx1{i}')
|
| 221 |
+
clarity = st.slider("Clarity", 1, 5, 3, help="1 = Very unclear, 5 = Very clear",key=f'fdx2{i}')
|
| 222 |
+
difficulty = st.slider("Difficulty", 1, 5, 3, help="1 = Very easy, 5 = Very difficult",key=f'fdx3{i}')
|
| 223 |
+
relevance = st.slider("Relevance", 1, 5, 3, help="1 = Not relevant, 5 = Highly relevant",key=f'fdx4{i}')
|
| 224 |
+
option_quality = st.slider("Quality of Options", 1, 5, 3, help="1 = Poor options, 5 = Excellent options",key=f'fdx5{i}')
|
| 225 |
+
overall_rating = st.slider("Overall Rating", 1, 5, 3, help="1 = Poor, 5 = Excellent",key=f'fdx6{i}')
|
| 226 |
+
comments = st.text_input("Additional Comments", "",key=f'fdx7{i}')
|
| 227 |
+
|
| 228 |
+
if st.button("Submit Feedback",key=f'fdx8{i}'):
|
| 229 |
+
feedback = {
|
| 230 |
+
"question": question,
|
| 231 |
+
'edited_question':edited_question,
|
| 232 |
+
"answer": answer,
|
| 233 |
+
"options": options,
|
| 234 |
+
"clarity": clarity,
|
| 235 |
+
"difficulty": difficulty,
|
| 236 |
+
"relevance": relevance,
|
| 237 |
+
"option_quality": option_quality,
|
| 238 |
+
"overall_rating": overall_rating,
|
| 239 |
+
"comments": comments
|
| 240 |
+
}
|
| 241 |
+
save_feedback(feedback)
|
| 242 |
+
st.success("Thank you for your feedback!")
|
| 243 |
+
|
| 244 |
+
def save_feedback(feedback):
|
| 245 |
+
st.session_state.feedback_data.append(feedback)
|
| 246 |
+
|
| 247 |
+
def analyze_feedback():
|
| 248 |
+
if not st.session_state.feedback_data:
|
| 249 |
+
st.warning("No feedback data available yet.")
|
| 250 |
+
return
|
| 251 |
+
|
| 252 |
+
df = pd.DataFrame(st.session_state.feedback_data)
|
| 253 |
+
|
| 254 |
+
st.write("Feedback Analysis")
|
| 255 |
+
st.write(f"Total feedback collected: {len(df)}")
|
| 256 |
+
|
| 257 |
+
metrics = ['clarity', 'difficulty', 'relevance', 'option_quality', 'overall_rating']
|
| 258 |
+
|
| 259 |
+
for metric in metrics:
|
| 260 |
+
fig, ax = plt.subplots()
|
| 261 |
+
df[metric].value_counts().sort_index().plot(kind='bar', ax=ax)
|
| 262 |
+
plt.title(f"Distribution of {metric.capitalize()} Ratings")
|
| 263 |
+
plt.xlabel("Rating")
|
| 264 |
+
plt.ylabel("Count")
|
| 265 |
+
st.pyplot(fig)
|
| 266 |
+
|
| 267 |
+
st.write("Average Ratings:")
|
| 268 |
+
st.write(df[metrics].mean())
|
| 269 |
+
|
| 270 |
+
# Word cloud of comments
|
| 271 |
+
comments = " ".join(df['comments'])
|
| 272 |
+
if len(comments) > 1:
|
| 273 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(comments)
|
| 274 |
+
fig, ax = plt.subplots()
|
| 275 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
| 276 |
+
plt.axis("off")
|
| 277 |
+
st.pyplot(fig)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def export_feedback_data():
|
| 281 |
+
if not st.session_state.feedback_data:
|
| 282 |
+
st.warning("No feedback data available.")
|
| 283 |
+
return None
|
| 284 |
+
|
| 285 |
+
# Convert feedback data to JSON
|
| 286 |
+
json_data = json.dumps(st.session_state.feedback_data, indent=2)
|
| 287 |
+
|
| 288 |
+
# Create a BytesIO object
|
| 289 |
+
buffer = BytesIO()
|
| 290 |
+
buffer.write(json_data.encode())
|
| 291 |
+
buffer.seek(0)
|
| 292 |
+
|
| 293 |
+
return buffer
|
| 294 |
+
|
| 295 |
+
# Function to clean text
|
| 296 |
+
def clean_text(text):
|
| 297 |
+
text = re.sub(r"[^\x00-\x7F]", " ", text)
|
| 298 |
+
text = re.sub(f"[\n]"," ", text)
|
| 299 |
+
return text
|
| 300 |
+
|
| 301 |
+
# Function to create text chunks
|
| 302 |
+
def segment_text(text, max_segment_length=700, batch_size=7):
|
| 303 |
+
sentences = sent_tokenize(text)
|
| 304 |
+
segments = []
|
| 305 |
+
current_segment = ""
|
| 306 |
+
|
| 307 |
+
for sentence in sentences:
|
| 308 |
+
if len(current_segment) + len(sentence) <= max_segment_length:
|
| 309 |
+
current_segment += sentence + " "
|
| 310 |
+
else:
|
| 311 |
+
segments.append(current_segment.strip())
|
| 312 |
+
current_segment = sentence + " "
|
| 313 |
+
|
| 314 |
+
if current_segment:
|
| 315 |
+
segments.append(current_segment.strip())
|
| 316 |
+
|
| 317 |
+
# Create batches
|
| 318 |
+
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
|
| 319 |
+
return batches
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Function to extract keywords using combined techniques
|
| 323 |
+
def extract_keywords(text, extract_all):
|
| 324 |
+
try:
|
| 325 |
+
gliner_model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
|
| 326 |
+
labels = ["person", "organization", "email", "Award", "Date", "Competitions", "Teams", "location", "percentage", "money"]
|
| 327 |
+
entities = gliner_model.predict_entities(text, labels, threshold=0.7)
|
| 328 |
+
|
| 329 |
+
gliner_keywords = list(set([ent["text"] for ent in entities]))
|
| 330 |
+
print(f"Gliner keywords:{gliner_keywords}")
|
| 331 |
+
# Use Only Gliner Entities
|
| 332 |
+
if extract_all is False:
|
| 333 |
+
return list(gliner_keywords)
|
| 334 |
+
|
| 335 |
+
doc = nlp(text)
|
| 336 |
+
spacy_keywords = set([ent.text for ent in doc.ents])
|
| 337 |
+
spacy_entities = spacy_keywords
|
| 338 |
+
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
|
| 339 |
+
|
| 340 |
+
#
|
| 341 |
+
# if extract_all is False:
|
| 342 |
+
# return list(spacy_entities)
|
| 343 |
+
|
| 344 |
+
# Use RAKE
|
| 345 |
+
rake = Rake()
|
| 346 |
+
rake.extract_keywords_from_text(text)
|
| 347 |
+
rake_keywords = set(rake.get_ranked_phrases())
|
| 348 |
+
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
|
| 349 |
+
# Use spaCy for NER and POS tagging
|
| 350 |
+
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
|
| 351 |
+
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
|
| 352 |
+
# Use TF-IDF
|
| 353 |
+
vectorizer = TfidfVectorizer(stop_words='english')
|
| 354 |
+
X = vectorizer.fit_transform([text])
|
| 355 |
+
tfidf_keywords = set(vectorizer.get_feature_names_out())
|
| 356 |
+
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
|
| 357 |
+
|
| 358 |
+
# Combine all keywords
|
| 359 |
+
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords).union(gliner_keywords)
|
| 360 |
+
|
| 361 |
+
return list(combined_keywords)
|
| 362 |
+
except Exception as e:
|
| 363 |
+
raise QuestionGenerationError(f"Error in keyword extraction: {str(e)}")
|
| 364 |
+
|
| 365 |
+
def get_similar_words_sense2vec(word, n=3):
|
| 366 |
+
# Try to find the word with its most likely part-of-speech
|
| 367 |
+
word_with_pos = word + "|NOUN"
|
| 368 |
+
if word_with_pos in s2v:
|
| 369 |
+
similar_words = s2v.most_similar(word_with_pos, n=n)
|
| 370 |
+
return [word.split("|")[0] for word, _ in similar_words]
|
| 371 |
+
|
| 372 |
+
# If not found, try without POS
|
| 373 |
+
if word in s2v:
|
| 374 |
+
similar_words = s2v.most_similar(word, n=n)
|
| 375 |
+
return [word.split("|")[0] for word, _ in similar_words]
|
| 376 |
+
|
| 377 |
+
return []
|
| 378 |
+
|
| 379 |
+
def get_synonyms(word, n=3):
|
| 380 |
+
synonyms = []
|
| 381 |
+
for syn in wordnet.synsets(word):
|
| 382 |
+
for lemma in syn.lemmas():
|
| 383 |
+
if lemma.name() != word and lemma.name() not in synonyms:
|
| 384 |
+
synonyms.append(lemma.name())
|
| 385 |
+
if len(synonyms) == n:
|
| 386 |
+
return synonyms
|
| 387 |
+
return synonyms
|
| 388 |
+
|
| 389 |
+
def generate_options(answer, context, n=3):
|
| 390 |
+
options = [answer]
|
| 391 |
+
|
| 392 |
+
# Add contextually relevant words using a pre-trained model
|
| 393 |
+
context_embedding = context_model.encode(context)
|
| 394 |
+
answer_embedding = context_model.encode(answer)
|
| 395 |
+
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
| 396 |
+
|
| 397 |
+
# Compute similarity scores and sort context words
|
| 398 |
+
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
|
| 399 |
+
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
| 400 |
+
options.extend(sorted_context_words[:n])
|
| 401 |
+
|
| 402 |
+
# Try to get similar words based on sense2vec
|
| 403 |
+
similar_words = get_similar_words_sense2vec(answer, n)
|
| 404 |
+
options.extend(similar_words)
|
| 405 |
+
|
| 406 |
+
# If we don't have enough options, try synonyms
|
| 407 |
+
if len(options) < n + 1:
|
| 408 |
+
synonyms = get_synonyms(answer, n - len(options) + 1)
|
| 409 |
+
options.extend(synonyms)
|
| 410 |
+
|
| 411 |
+
# If we still don't have enough options, extract other entities from the context
|
| 412 |
+
if len(options) < n + 1:
|
| 413 |
+
doc = nlp(context)
|
| 414 |
+
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
|
| 415 |
+
options.extend(entities[:n - len(options) + 1])
|
| 416 |
+
|
| 417 |
+
# If we still need more options, add some random words from the context
|
| 418 |
+
if len(options) < n + 1:
|
| 419 |
+
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
| 420 |
+
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
|
| 421 |
+
print(f"\n\nAll Possible Options: {options}\n\n")
|
| 422 |
+
# Ensure we have the correct number of unique options
|
| 423 |
+
options = list(dict.fromkeys(options))[:n+1]
|
| 424 |
+
|
| 425 |
+
# Shuffle the options
|
| 426 |
+
random.shuffle(options)
|
| 427 |
+
|
| 428 |
+
return options
|
| 429 |
+
|
| 430 |
+
# Function to map keywords to sentences with customizable context window size
|
| 431 |
+
def map_keywords_to_sentences(text, keywords, context_window_size):
|
| 432 |
+
sentences = sent_tokenize(text)
|
| 433 |
+
keyword_sentence_mapping = {}
|
| 434 |
+
print(f"\n\nSentences: {sentences}\n\n")
|
| 435 |
+
for keyword in keywords:
|
| 436 |
+
for i, sentence in enumerate(sentences):
|
| 437 |
+
if keyword in sentence:
|
| 438 |
+
# Combine current sentence with surrounding sentences for context
|
| 439 |
+
# start = max(0, i - context_window_size)
|
| 440 |
+
# end = min(len(sentences), i + context_window_size + 1)
|
| 441 |
+
start = max(0,i - context_window_size)
|
| 442 |
+
context_sentenses = sentences[start:i+1]
|
| 443 |
+
context = ' '.join(context_sentenses)
|
| 444 |
+
# context = ' '.join(sentences[start:end])
|
| 445 |
+
if keyword not in keyword_sentence_mapping:
|
| 446 |
+
keyword_sentence_mapping[keyword] = context
|
| 447 |
+
else:
|
| 448 |
+
keyword_sentence_mapping[keyword] += ' ' + context
|
| 449 |
+
return keyword_sentence_mapping
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
# Function to perform entity linking using Wikipedia API
|
| 453 |
+
@lru_cache(maxsize=128)
|
| 454 |
+
def entity_linking(keyword):
|
| 455 |
+
page = wiki_wiki.page(keyword)
|
| 456 |
+
if page.exists():
|
| 457 |
+
return page.fullurl
|
| 458 |
+
return None
|
| 459 |
+
|
| 460 |
+
async def generate_question_async(context, answer, num_beams):
|
| 461 |
+
try:
|
| 462 |
+
input_text = f"<context> {context} <answer> {answer}"
|
| 463 |
+
print(f"\n{input_text}\n")
|
| 464 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 465 |
+
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
|
| 466 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 467 |
+
print(f"\n{question}\n")
|
| 468 |
+
return question
|
| 469 |
+
except Exception as e:
|
| 470 |
+
raise QuestionGenerationError(f"Error in question generation: {str(e)}")
|
| 471 |
+
|
| 472 |
+
async def generate_options_async(answer, context, n=3):
|
| 473 |
+
try:
|
| 474 |
+
options = [answer]
|
| 475 |
+
|
| 476 |
+
# Add contextually relevant words using a pre-trained model
|
| 477 |
+
context_embedding = await asyncio.to_thread(context_model.encode, context)
|
| 478 |
+
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
|
| 479 |
+
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
| 480 |
+
|
| 481 |
+
# Compute similarity scores and sort context words
|
| 482 |
+
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
|
| 483 |
+
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
| 484 |
+
options.extend(sorted_context_words[:n])
|
| 485 |
+
|
| 486 |
+
# Try to get similar words based on sense2vec
|
| 487 |
+
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
|
| 488 |
+
options.extend(similar_words)
|
| 489 |
+
|
| 490 |
+
# If we don't have enough options, try synonyms
|
| 491 |
+
if len(options) < n + 1:
|
| 492 |
+
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
|
| 493 |
+
options.extend(synonyms)
|
| 494 |
+
|
| 495 |
+
# Ensure we have the correct number of unique options
|
| 496 |
+
options = list(dict.fromkeys(options))[:n+1]
|
| 497 |
+
|
| 498 |
+
# Shuffle the options
|
| 499 |
+
random.shuffle(options)
|
| 500 |
+
|
| 501 |
+
return options
|
| 502 |
+
except Exception as e:
|
| 503 |
+
raise QuestionGenerationError(f"Error in generating options: {str(e)}")
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
# Function to generate questions using beam search
|
| 507 |
+
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
|
| 508 |
+
try:
|
| 509 |
+
batches = segment_text(text)
|
| 510 |
+
keywords = extract_keywords(text, extract_all_keywords)
|
| 511 |
+
all_questions = []
|
| 512 |
+
|
| 513 |
+
progress_bar = st.progress(0)
|
| 514 |
+
status_text = st.empty()
|
| 515 |
+
|
| 516 |
+
for i, batch in enumerate(batches):
|
| 517 |
+
status_text.text(f"Processing batch {i+1} of {len(batches)}...")
|
| 518 |
+
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
|
| 519 |
+
all_questions.extend(batch_questions)
|
| 520 |
+
progress_bar.progress((i + 1) / len(batches))
|
| 521 |
+
|
| 522 |
+
if len(all_questions) >= num_questions:
|
| 523 |
+
break
|
| 524 |
+
|
| 525 |
+
progress_bar.empty()
|
| 526 |
+
status_text.empty()
|
| 527 |
+
|
| 528 |
+
return all_questions[:num_questions]
|
| 529 |
+
except QuestionGenerationError as e:
|
| 530 |
+
st.error(f"An error occurred during question generation: {str(e)}")
|
| 531 |
+
return []
|
| 532 |
+
except Exception as e:
|
| 533 |
+
st.error(f"An unexpected error occurred: {str(e)}")
|
| 534 |
+
return []
|
| 535 |
+
|
| 536 |
+
async def generate_fill_in_the_blank_questions(context,answer):
|
| 537 |
+
answerSize = len(answer)
|
| 538 |
+
replacedBlanks = ""
|
| 539 |
+
for i in range(answerSize):
|
| 540 |
+
replacedBlanks += "_"
|
| 541 |
+
blank_q = context.replace(answer,replacedBlanks)
|
| 542 |
+
return blank_q
|
| 543 |
+
|
| 544 |
+
async def process_batch(batch, keywords, context_window_size, num_beams):
|
| 545 |
+
questions = []
|
| 546 |
+
for text in batch:
|
| 547 |
+
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
| 548 |
+
for keyword, context in keyword_sentence_mapping.items():
|
| 549 |
+
question = await generate_question_async(context, keyword, num_beams)
|
| 550 |
+
options = await generate_options_async(keyword, context)
|
| 551 |
+
blank_question = await generate_fill_in_the_blank_questions(context,keyword)
|
| 552 |
+
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
|
| 553 |
+
if overall_score >= 0.5:
|
| 554 |
+
questions.append({
|
| 555 |
+
"question": question,
|
| 556 |
+
"context": context,
|
| 557 |
+
"answer": keyword,
|
| 558 |
+
"options": options,
|
| 559 |
+
"overall_score": overall_score,
|
| 560 |
+
"relevance_score": relevance_score,
|
| 561 |
+
"complexity_score": complexity_score,
|
| 562 |
+
"spelling_correctness": spelling_correctness,
|
| 563 |
+
"blank_question": blank_question,
|
| 564 |
+
})
|
| 565 |
+
return questions
|
| 566 |
+
|
| 567 |
+
# Function to export questions to CSV
|
| 568 |
+
def export_to_csv(data):
|
| 569 |
+
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
| 570 |
+
df = pd.DataFrame(data)
|
| 571 |
+
# csv = df.to_csv(index=False,encoding='utf-8')
|
| 572 |
+
csv = df.to_csv(index=False)
|
| 573 |
+
return csv
|
| 574 |
+
|
| 575 |
+
# Function to export questions to PDF
|
| 576 |
+
def export_to_pdf(data):
|
| 577 |
+
pdf = FPDF()
|
| 578 |
+
pdf.add_page()
|
| 579 |
+
pdf.set_font("Arial", size=12)
|
| 580 |
+
|
| 581 |
+
for item in data:
|
| 582 |
+
pdf.multi_cell(0, 10, f"Context: {item['context']}")
|
| 583 |
+
pdf.multi_cell(0, 10, f"Question: {item['question']}")
|
| 584 |
+
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
|
| 585 |
+
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
|
| 586 |
+
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
|
| 587 |
+
pdf.ln(10)
|
| 588 |
+
|
| 589 |
+
return pdf.output(dest='S').encode('latin-1')
|
| 590 |
+
|
| 591 |
+
def display_word_cloud(generated_questions):
|
| 592 |
+
word_frequency = {}
|
| 593 |
+
for question in generated_questions:
|
| 594 |
+
words = question.split()
|
| 595 |
+
for word in words:
|
| 596 |
+
word_frequency[word] = word_frequency.get(word, 0) + 1
|
| 597 |
+
|
| 598 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
|
| 599 |
+
plt.figure(figsize=(10, 5))
|
| 600 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
| 601 |
+
plt.axis('off')
|
| 602 |
+
st.pyplot()
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def assess_question_quality(context, question, answer):
|
| 606 |
+
# Assess relevance using cosine similarity
|
| 607 |
+
context_doc = nlp(context)
|
| 608 |
+
question_doc = nlp(question)
|
| 609 |
+
relevance_score = context_doc.similarity(question_doc)
|
| 610 |
+
|
| 611 |
+
# Assess complexity using token length (as a simple metric)
|
| 612 |
+
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
|
| 613 |
+
|
| 614 |
+
# Assess Spelling correctness
|
| 615 |
+
misspelled = spell.unknown(question.split())
|
| 616 |
+
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
|
| 617 |
+
|
| 618 |
+
# Calculate overall score (you can adjust weights as needed)
|
| 619 |
+
overall_score = (
|
| 620 |
+
0.4 * relevance_score +
|
| 621 |
+
0.4 * complexity_score +
|
| 622 |
+
0.2 * spelling_correctness
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
return overall_score, relevance_score, complexity_score, spelling_correctness
|
| 626 |
|
| 627 |
def main():
|
| 628 |
+
# Streamlit interface
|
| 629 |
st.title(":blue[Question Generator System]")
|
| 630 |
session_id = get_session_id()
|
| 631 |
state = initialize_state(session_id)
|
|
|
|
| 633 |
st.session_state.feedback_data = []
|
| 634 |
|
| 635 |
with st.sidebar:
|
| 636 |
+
show_info = st.toggle('Show Info',True)
|
| 637 |
if show_info:
|
| 638 |
display_info()
|
| 639 |
st.subheader("Customization Options")
|
| 640 |
# Customization options
|
| 641 |
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
| 642 |
with st.expander("Choose the Additional Elements to show"):
|
| 643 |
+
show_context = st.checkbox("Context",True)
|
| 644 |
show_answer = st.checkbox("Answer",True)
|
| 645 |
+
show_options = st.checkbox("Options",False)
|
| 646 |
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
| 647 |
+
show_qa_scores = st.checkbox("QA Score",False)
|
| 648 |
show_blank_question = st.checkbox("Fill in the Blank Questions",True)
|
| 649 |
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
|
| 650 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
|
|
|
| 670 |
text = clean_text(text)
|
| 671 |
with st.expander("Show text"):
|
| 672 |
st.write(text)
|
|
|
|
| 673 |
generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
|
| 674 |
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
|
| 675 |
|
| 676 |
+
# if generate_questions_button:
|
| 677 |
if generate_questions_button and text:
|
| 678 |
start_time = time.time()
|
| 679 |
with st.spinner("Generating questions..."):
|
| 680 |
try:
|
| 681 |
+
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords))
|
| 682 |
if not state['generated_questions']:
|
| 683 |
st.warning("No questions were generated. The text might be too short or lack suitable content.")
|
| 684 |
else:
|
|
|
|
| 739 |
# Export buttons
|
| 740 |
# if st.session_state.generated_questions:
|
| 741 |
if state['generated_questions']:
|
| 742 |
+
with st.sidebar:
|
| 743 |
+
csv_data = export_to_csv(state['generated_questions'])
|
| 744 |
+
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
|
| 745 |
+
|
| 746 |
+
pdf_data = export_to_pdf(state['generated_questions'])
|
| 747 |
+
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
|
| 749 |
with st.expander("View Visualizations"):
|
| 750 |
questions = [tpl['question'] for tpl in state['generated_questions']]
|
|
|
|
| 755 |
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
|
| 756 |
st.line_chart(overall_scores)
|
| 757 |
|
| 758 |
+
|
| 759 |
# View Feedback Statistics
|
| 760 |
with st.expander("View Feedback Statistics"):
|
| 761 |
analyze_feedback()
|