Spaces:
Runtime error
Runtime error
Update c1.py
Browse files
c1.py
CHANGED
|
@@ -1,72 +1,72 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 3 |
-
import torch
|
| 4 |
-
import spacy
|
| 5 |
-
import nltk
|
| 6 |
-
|
| 7 |
-
#nltk.download('punkt')
|
| 8 |
-
from nltk.tokenize import sent_tokenize
|
| 9 |
-
|
| 10 |
-
# Load spaCy model
|
| 11 |
-
nlp = spacy.load("en_core_web_sm")
|
| 12 |
-
|
| 13 |
-
# Load T5 model and tokenizer
|
| 14 |
-
model_name = "DevBM/t5-large-squad"
|
| 15 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 16 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 17 |
-
|
| 18 |
-
# Function to extract keywords using spaCy
|
| 19 |
-
def extract_keywords(text):
|
| 20 |
-
doc = nlp(text)
|
| 21 |
-
keywords = set()
|
| 22 |
-
# Extract named entities
|
| 23 |
-
for entity in doc.ents:
|
| 24 |
-
keywords.add(entity.text)
|
| 25 |
-
# Extract nouns and proper nouns
|
| 26 |
-
for token in doc:
|
| 27 |
-
if token.pos_ in ["NOUN", "PROPN"]:
|
| 28 |
-
keywords.add(token.text)
|
| 29 |
-
return list(keywords)
|
| 30 |
-
|
| 31 |
-
# Function to map keywords to sentences
|
| 32 |
-
def map_keywords_to_sentences(text, keywords):
|
| 33 |
-
sentences = sent_tokenize(text)
|
| 34 |
-
keyword_sentence_mapping = {}
|
| 35 |
-
for keyword in keywords:
|
| 36 |
-
for i, sentence in enumerate(sentences):
|
| 37 |
-
if keyword in sentence:
|
| 38 |
-
# Combine current sentence with surrounding sentences for context
|
| 39 |
-
start = max(0, i-1)
|
| 40 |
-
end = min(len(sentences), i+2)
|
| 41 |
-
context = ' '.join(sentences[start:end])
|
| 42 |
-
if keyword not in keyword_sentence_mapping:
|
| 43 |
-
keyword_sentence_mapping[keyword] = context
|
| 44 |
-
else:
|
| 45 |
-
keyword_sentence_mapping[keyword] += ' ' + context
|
| 46 |
-
return keyword_sentence_mapping
|
| 47 |
-
|
| 48 |
-
# Function to generate questions
|
| 49 |
-
def generate_question(context, answer):
|
| 50 |
-
input_text = f"<context> {context} <answer> {answer}"
|
| 51 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 52 |
-
outputs = model.generate(input_ids)
|
| 53 |
-
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
-
return question
|
| 55 |
-
|
| 56 |
-
# Streamlit interface
|
| 57 |
-
st.title("Question Generator from Text")
|
| 58 |
-
text = st.text_area("Enter text here:")
|
| 59 |
-
if st.button("Generate Questions"):
|
| 60 |
-
if text:
|
| 61 |
-
keywords = extract_keywords(text)
|
| 62 |
-
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords)
|
| 63 |
-
|
| 64 |
-
st.subheader("Generated Questions:")
|
| 65 |
-
for keyword, context in keyword_sentence_mapping.items():
|
| 66 |
-
question = generate_question(context, keyword)
|
| 67 |
-
st.write(f"**Context:** {context}")
|
| 68 |
-
st.write(f"**Answer:** {keyword}")
|
| 69 |
-
st.write(f"**Question:** {question}")
|
| 70 |
-
st.write("---")
|
| 71 |
-
else:
|
| 72 |
-
st.write("Please enter some text to generate questions.")
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import spacy
|
| 5 |
+
import nltk
|
| 6 |
+
from b import b
|
| 7 |
+
#nltk.download('punkt')
|
| 8 |
+
from nltk.tokenize import sent_tokenize
|
| 9 |
+
|
| 10 |
+
# Load spaCy model
|
| 11 |
+
nlp = spacy.load("en_core_web_sm")
|
| 12 |
+
|
| 13 |
+
# Load T5 model and tokenizer
|
| 14 |
+
model_name = "DevBM/t5-large-squad"
|
| 15 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 16 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 17 |
+
|
| 18 |
+
# Function to extract keywords using spaCy
|
| 19 |
+
def extract_keywords(text):
|
| 20 |
+
doc = nlp(text)
|
| 21 |
+
keywords = set()
|
| 22 |
+
# Extract named entities
|
| 23 |
+
for entity in doc.ents:
|
| 24 |
+
keywords.add(entity.text)
|
| 25 |
+
# Extract nouns and proper nouns
|
| 26 |
+
for token in doc:
|
| 27 |
+
if token.pos_ in ["NOUN", "PROPN"]:
|
| 28 |
+
keywords.add(token.text)
|
| 29 |
+
return list(keywords)
|
| 30 |
+
|
| 31 |
+
# Function to map keywords to sentences
|
| 32 |
+
def map_keywords_to_sentences(text, keywords):
|
| 33 |
+
sentences = sent_tokenize(text)
|
| 34 |
+
keyword_sentence_mapping = {}
|
| 35 |
+
for keyword in keywords:
|
| 36 |
+
for i, sentence in enumerate(sentences):
|
| 37 |
+
if keyword in sentence:
|
| 38 |
+
# Combine current sentence with surrounding sentences for context
|
| 39 |
+
start = max(0, i-1)
|
| 40 |
+
end = min(len(sentences), i+2)
|
| 41 |
+
context = ' '.join(sentences[start:end])
|
| 42 |
+
if keyword not in keyword_sentence_mapping:
|
| 43 |
+
keyword_sentence_mapping[keyword] = context
|
| 44 |
+
else:
|
| 45 |
+
keyword_sentence_mapping[keyword] += ' ' + context
|
| 46 |
+
return keyword_sentence_mapping
|
| 47 |
+
|
| 48 |
+
# Function to generate questions
|
| 49 |
+
def generate_question(context, answer):
|
| 50 |
+
input_text = f"<context> {context} <answer> {answer}"
|
| 51 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
| 52 |
+
outputs = model.generate(input_ids)
|
| 53 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
+
return question
|
| 55 |
+
|
| 56 |
+
# Streamlit interface
|
| 57 |
+
st.title("Question Generator from Text")
|
| 58 |
+
text = st.text_area("Enter text here:")
|
| 59 |
+
if st.button("Generate Questions"):
|
| 60 |
+
if text:
|
| 61 |
+
keywords = extract_keywords(text)
|
| 62 |
+
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords)
|
| 63 |
+
|
| 64 |
+
st.subheader("Generated Questions:")
|
| 65 |
+
for keyword, context in keyword_sentence_mapping.items():
|
| 66 |
+
question = generate_question(context, keyword)
|
| 67 |
+
st.write(f"**Context:** {context}")
|
| 68 |
+
st.write(f"**Answer:** {keyword}")
|
| 69 |
+
st.write(f"**Question:** {question}")
|
| 70 |
+
st.write("---")
|
| 71 |
+
else:
|
| 72 |
+
st.write("Please enter some text to generate questions.")
|