Spaces:
Running
Running
update project structure
Browse files- auth.py +67 -0
- config.py +19 -0
- database.py +16 -0
- main.py +25 -288
- models.py +18 -0
- routes/__init__.py +0 -0
- routes/auth.py +28 -0
- routes/health.py +8 -0
- routes/predict.py +77 -0
- services/__init__.py +0 -0
- services/sentence_transformer_service.py +66 -0
- utils.py +7 -0
auth.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime, timedelta, timezone
|
2 |
+
import jwt
|
3 |
+
from fastapi import Depends, HTTPException, status
|
4 |
+
from fastapi.security import OAuth2PasswordBearer
|
5 |
+
from passlib.context import CryptContext
|
6 |
+
from config import SECRET_KEY, ALGORITHM, ACCESS_TOKEN_EXPIRE_HOURS
|
7 |
+
from models import TokenData, UserInDB, User
|
8 |
+
from database import users_db
|
9 |
+
from typing import Annotated, Optional
|
10 |
+
from jwt.exceptions import InvalidTokenError
|
11 |
+
|
12 |
+
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
13 |
+
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
14 |
+
|
15 |
+
# Authentication helper functions
|
16 |
+
def verify_password(plain_password, hashed_password):
|
17 |
+
return pwd_context.verify(plain_password, hashed_password)
|
18 |
+
|
19 |
+
def get_user(db, username: str):
|
20 |
+
if username in db:
|
21 |
+
user_dict = db[username]
|
22 |
+
return UserInDB(**user_dict)
|
23 |
+
return None
|
24 |
+
|
25 |
+
def authenticate_user(fake_db, username: str, password: str):
|
26 |
+
user = get_user(fake_db, username)
|
27 |
+
if not user:
|
28 |
+
return False
|
29 |
+
if not verify_password(password, user.hashed_password):
|
30 |
+
return False
|
31 |
+
return user
|
32 |
+
|
33 |
+
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
|
34 |
+
to_encode = data.copy()
|
35 |
+
if expires_delta:
|
36 |
+
expire = datetime.now(timezone.utc) + expires_delta
|
37 |
+
else:
|
38 |
+
expire = datetime.now(timezone.utc) + timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
|
39 |
+
to_encode.update({"exp": expire})
|
40 |
+
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
41 |
+
return encoded_jwt
|
42 |
+
|
43 |
+
async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]):
|
44 |
+
credentials_exception = HTTPException(
|
45 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
46 |
+
detail="Could not validate credentials",
|
47 |
+
headers={"WWW-Authenticate": "Bearer"},
|
48 |
+
)
|
49 |
+
try:
|
50 |
+
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
51 |
+
username = payload.get("sub")
|
52 |
+
if username is None:
|
53 |
+
raise credentials_exception
|
54 |
+
token_data = TokenData(username=username)
|
55 |
+
except InvalidTokenError:
|
56 |
+
raise credentials_exception
|
57 |
+
user = get_user(users_db, username=token_data.username)
|
58 |
+
if user is None:
|
59 |
+
raise credentials_exception
|
60 |
+
return user
|
61 |
+
|
62 |
+
async def get_current_active_user(
|
63 |
+
current_user: Annotated[User, Depends(get_current_user)],
|
64 |
+
):
|
65 |
+
if current_user.disabled:
|
66 |
+
raise HTTPException(status_code=400, detail="Inactive user")
|
67 |
+
return current_user
|
config.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Security Config
|
4 |
+
SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7"
|
5 |
+
ALGORITHM = "HS256"
|
6 |
+
ACCESS_TOKEN_EXPIRE_HOURS = 24
|
7 |
+
|
8 |
+
# Paths
|
9 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
10 |
+
DATA_DIR = os.path.join(BASE_DIR, "data")
|
11 |
+
UPLOAD_DIR = os.path.join(BASE_DIR, "uploads")
|
12 |
+
OUTPUT_DIR = os.path.join(BASE_DIR, "outputs")
|
13 |
+
SUBJECT_DATA_FILE = os.path.join(DATA_DIR, "subjectData.csv")
|
14 |
+
SAMPLE_DATA_FILE = os.path.join(DATA_DIR, "sampleData.csv")
|
15 |
+
# Model Names
|
16 |
+
MODEL_NAME = "Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0"
|
17 |
+
SETENCE_EMBEDDING_FILE = os.path.join(DATA_DIR, "sample_name_sentence_embeddings(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl")
|
18 |
+
SETENCE_SIMILARITY_FILE = os.path.join(DATA_DIR, "sample_name_sentence_similarities(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl")
|
19 |
+
|
database.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
users_db = {
|
2 |
+
"chien_vm": {
|
3 |
+
"username": "chien_vm",
|
4 |
+
"full_name": "Chien VM",
|
5 |
+
"email": "[email protected]",
|
6 |
+
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
|
7 |
+
"disabled": False,
|
8 |
+
},
|
9 |
+
"hoi_nv": {
|
10 |
+
"username": "hoi_nv",
|
11 |
+
"full_name": "Hoi NV",
|
12 |
+
"email": "[email protected]",
|
13 |
+
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
|
14 |
+
"disabled": False,
|
15 |
+
}
|
16 |
+
}
|
main.py
CHANGED
@@ -1,318 +1,55 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
-
import
|
4 |
-
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, status
|
5 |
-
from fastapi.responses import FileResponse
|
6 |
-
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
|
7 |
import uvicorn
|
8 |
import traceback
|
9 |
-
import pickle
|
10 |
-
import shutil
|
11 |
-
from pathlib import Path
|
12 |
from contextlib import asynccontextmanager
|
13 |
-
import pandas as pd
|
14 |
-
from typing import Annotated, Optional, Union
|
15 |
-
from datetime import datetime, timedelta, timezone
|
16 |
-
import jwt
|
17 |
-
from jwt.exceptions import InvalidTokenError
|
18 |
-
from passlib.context import CryptContext
|
19 |
-
from pydantic import BaseModel
|
20 |
|
21 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
sys.path.append(os.path.join(current_dir, "meisai-check-ai"))
|
23 |
|
24 |
-
from
|
25 |
-
|
26 |
-
|
27 |
-
from data_lib.input_name_data import InputNameData
|
28 |
-
from data_lib.subject_data import SubjectData
|
29 |
-
from data_lib.sample_name_data import SampleNameData
|
30 |
-
from clustering_lib.sentence_clustering_lib import SentenceClusteringLib
|
31 |
-
from data_lib.base_data import (
|
32 |
-
COL_STANDARD_NAME,
|
33 |
-
COL_STANDARD_NAME_KEY,
|
34 |
-
COL_STANDARD_SUBJECT,
|
35 |
-
)
|
36 |
-
from mapping_lib.name_mapping_helper import NameMappingHelper
|
37 |
-
|
38 |
-
# Initialize global variables for model and data
|
39 |
-
sentenceTransformerHelper = None
|
40 |
-
dic_standard_subject = None
|
41 |
-
sample_name_sentence_embeddings = None
|
42 |
-
sample_name_sentence_similarities = None
|
43 |
-
sampleData = None
|
44 |
-
sentence_clustering_lib = None
|
45 |
-
name_groups = None
|
46 |
-
|
47 |
-
# Create data directory if it doesn't exist
|
48 |
-
os.makedirs(os.path.join(current_dir, "data"), exist_ok=True)
|
49 |
-
os.makedirs(os.path.join(current_dir, "uploads"), exist_ok=True)
|
50 |
-
os.makedirs(os.path.join(current_dir, "outputs"), exist_ok=True)
|
51 |
-
|
52 |
-
# Authentication related settings
|
53 |
-
SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7"
|
54 |
-
ALGORITHM = "HS256"
|
55 |
-
ACCESS_TOKEN_EXPIRE_HOURS = 24 # Token expiration set to 24 hours
|
56 |
-
|
57 |
-
# Password hashing context
|
58 |
-
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
|
59 |
-
|
60 |
-
# OAuth2 scheme for token
|
61 |
-
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
|
62 |
-
|
63 |
-
# User database models
|
64 |
-
class Token(BaseModel):
|
65 |
-
access_token: str
|
66 |
-
token_type: str
|
67 |
-
|
68 |
-
class TokenData(BaseModel):
|
69 |
-
username: Optional[str] = None
|
70 |
-
|
71 |
-
class User(BaseModel):
|
72 |
-
username: str
|
73 |
-
email: Optional[str] = None
|
74 |
-
full_name: Optional[str] = None
|
75 |
-
disabled: Optional[bool] = None
|
76 |
-
|
77 |
-
class UserInDB(User):
|
78 |
-
hashed_password: str
|
79 |
-
|
80 |
-
# Fake users database with hashed passwords
|
81 |
-
users_db = {
|
82 |
-
"chien_vm": {
|
83 |
-
"username": "chien_vm",
|
84 |
-
"full_name": "Chien VM",
|
85 |
-
"email": "[email protected]",
|
86 |
-
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
|
87 |
-
"disabled": False,
|
88 |
-
},
|
89 |
-
"hoi_nv": {
|
90 |
-
"username": "hoi_nv",
|
91 |
-
"full_name": "Hoi NV",
|
92 |
-
"email": "[email protected]",
|
93 |
-
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
|
94 |
-
"disabled": False,
|
95 |
-
}
|
96 |
-
}
|
97 |
|
98 |
-
# Authentication helper functions
|
99 |
-
def verify_password(plain_password, hashed_password):
|
100 |
-
return pwd_context.verify(plain_password, hashed_password)
|
101 |
-
|
102 |
-
def get_user(db, username: str):
|
103 |
-
if username in db:
|
104 |
-
user_dict = db[username]
|
105 |
-
return UserInDB(**user_dict)
|
106 |
-
return None
|
107 |
-
|
108 |
-
def authenticate_user(fake_db, username: str, password: str):
|
109 |
-
user = get_user(fake_db, username)
|
110 |
-
if not user:
|
111 |
-
return False
|
112 |
-
if not verify_password(password, user.hashed_password):
|
113 |
-
return False
|
114 |
-
return user
|
115 |
-
|
116 |
-
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
|
117 |
-
to_encode = data.copy()
|
118 |
-
if expires_delta:
|
119 |
-
expire = datetime.now(timezone.utc) + expires_delta
|
120 |
-
else:
|
121 |
-
expire = datetime.now(timezone.utc) + timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
|
122 |
-
to_encode.update({"exp": expire})
|
123 |
-
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
|
124 |
-
return encoded_jwt
|
125 |
-
|
126 |
-
async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]):
|
127 |
-
credentials_exception = HTTPException(
|
128 |
-
status_code=status.HTTP_401_UNAUTHORIZED,
|
129 |
-
detail="Could not validate credentials",
|
130 |
-
headers={"WWW-Authenticate": "Bearer"},
|
131 |
-
)
|
132 |
-
try:
|
133 |
-
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
|
134 |
-
username = payload.get("sub")
|
135 |
-
if username is None:
|
136 |
-
raise credentials_exception
|
137 |
-
token_data = TokenData(username=username)
|
138 |
-
except InvalidTokenError:
|
139 |
-
raise credentials_exception
|
140 |
-
user = get_user(users_db, username=token_data.username)
|
141 |
-
if user is None:
|
142 |
-
raise credentials_exception
|
143 |
-
return user
|
144 |
-
|
145 |
-
async def get_current_active_user(
|
146 |
-
current_user: Annotated[User, Depends(get_current_user)],
|
147 |
-
):
|
148 |
-
if current_user.disabled:
|
149 |
-
raise HTTPException(status_code=400, detail="Inactive user")
|
150 |
-
return current_user
|
151 |
|
152 |
@asynccontextmanager
|
153 |
async def lifespan(app: FastAPI):
|
154 |
"""Lifespan context manager for startup and shutdown events"""
|
155 |
-
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
|
156 |
-
global sample_name_sentence_similarities, sampleData, sentence_clustering_lib, name_groups
|
157 |
-
|
158 |
try:
|
159 |
-
# Load
|
160 |
-
|
161 |
-
convert_to_zenkaku_flag=True, replace_words=None, keywords=None
|
162 |
-
)
|
163 |
-
sentenceTransformerHelper.load_model_by_name(
|
164 |
-
"Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0"
|
165 |
-
)
|
166 |
-
|
167 |
-
# Load standard subject dictionary
|
168 |
-
dic_standard_subject = SubjectData.create_standard_subject_dic_from_file(
|
169 |
-
"data/subjectData.csv"
|
170 |
-
)
|
171 |
-
|
172 |
-
# Load pre-computed embeddings and similarities
|
173 |
-
with open(
|
174 |
-
f"data/sample_name_sentence_embeddings(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
|
175 |
-
"rb",
|
176 |
-
) as f:
|
177 |
-
sample_name_sentence_embeddings = pickle.load(f)
|
178 |
-
|
179 |
-
with open(
|
180 |
-
f"data/sample_name_sentence_similarities(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
|
181 |
-
"rb",
|
182 |
-
) as f:
|
183 |
-
sample_name_sentence_similarities = pickle.load(f)
|
184 |
-
|
185 |
-
# Load and process sample data
|
186 |
-
sampleData = SampleNameData()
|
187 |
-
file_path = os.path.join(current_dir, "data", "sampleData.csv")
|
188 |
-
sampleData.load_data_from_csv(file_path)
|
189 |
-
sampleData.process_data()
|
190 |
-
|
191 |
-
# Create sentence clusters
|
192 |
-
sentence_clustering_lib = SentenceClusteringLib(sample_name_sentence_embeddings)
|
193 |
-
best_name_eps = 0.07
|
194 |
-
name_groups, _ = sentence_clustering_lib.create_sentence_cluster(best_name_eps)
|
195 |
-
sampleData._create_key_column(
|
196 |
-
COL_STANDARD_NAME_KEY, COL_STANDARD_SUBJECT, COL_STANDARD_NAME
|
197 |
-
)
|
198 |
-
sampleData.set_name_sentence_labels(name_groups)
|
199 |
-
sampleData.build_search_tree()
|
200 |
-
|
201 |
-
print("Models and data loaded successfully")
|
202 |
except Exception as e:
|
203 |
print(f"Error during startup: {e}")
|
204 |
traceback.print_exc()
|
205 |
|
206 |
-
yield #
|
207 |
|
208 |
-
# Cleanup code (if needed) goes here
|
209 |
print("Shutting down application")
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
|
|
|
|
|
|
213 |
|
214 |
|
215 |
-
@app.get("/")
|
216 |
async def root():
|
217 |
return {"message": "Hello World"}
|
218 |
|
219 |
-
|
220 |
-
@app.get("/health")
|
221 |
-
async def health_check():
|
222 |
-
return {"status": "ok", "timestamp": time.time()}
|
223 |
-
|
224 |
-
|
225 |
-
@app.post("/token")
|
226 |
-
async def login_for_access_token(
|
227 |
-
form_data: Annotated[OAuth2PasswordRequestForm, Depends()]
|
228 |
-
) -> Token:
|
229 |
-
"""
|
230 |
-
Login endpoint to get an access token
|
231 |
-
"""
|
232 |
-
user = authenticate_user(users_db, form_data.username, form_data.password)
|
233 |
-
if not user:
|
234 |
-
raise HTTPException(
|
235 |
-
status_code=status.HTTP_401_UNAUTHORIZED,
|
236 |
-
detail="Incorrect username or password",
|
237 |
-
headers={"WWW-Authenticate": "Bearer"},
|
238 |
-
)
|
239 |
-
access_token_expires = timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
|
240 |
-
access_token = create_access_token(
|
241 |
-
data={"sub": user.username}, expires_delta=access_token_expires
|
242 |
-
)
|
243 |
-
return Token(access_token=access_token, token_type="bearer")
|
244 |
-
|
245 |
-
|
246 |
-
@app.post("/predict")
|
247 |
-
async def predict(
|
248 |
-
current_user: Annotated[User, Depends(get_current_active_user)],
|
249 |
-
file: UploadFile = File(...)
|
250 |
-
):
|
251 |
-
"""
|
252 |
-
Process an input CSV file and return standardized names (requires authentication)
|
253 |
-
"""
|
254 |
-
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
|
255 |
-
global sample_name_sentence_similarities, sampleData, name_groups
|
256 |
-
|
257 |
-
if not file.filename.endswith(".csv"):
|
258 |
-
raise HTTPException(status_code=400, detail="Only CSV files are supported")
|
259 |
-
|
260 |
-
# Save uploaded file
|
261 |
-
timestamp = int(time.time())
|
262 |
-
input_file_path = os.path.join(current_dir, "uploads", f"input_{timestamp}_{current_user.username}.csv")
|
263 |
-
|
264 |
-
# Use CSV format with correct extension
|
265 |
-
output_file_path = os.path.join(current_dir, "outputs", f"output_{timestamp}_{current_user.username}.csv")
|
266 |
-
|
267 |
-
try:
|
268 |
-
with open(input_file_path, "wb") as buffer:
|
269 |
-
shutil.copyfileobj(file.file, buffer)
|
270 |
-
finally:
|
271 |
-
file.file.close()
|
272 |
-
|
273 |
-
try:
|
274 |
-
# Process input data
|
275 |
-
inputData = InputNameData(dic_standard_subject)
|
276 |
-
inputData.load_data_from_csv(input_file_path)
|
277 |
-
inputData.process_data()
|
278 |
-
|
279 |
-
# Map standard names
|
280 |
-
nameMappingHelper = NameMappingHelper(
|
281 |
-
sentenceTransformerHelper,
|
282 |
-
inputData,
|
283 |
-
sampleData,
|
284 |
-
sample_name_sentence_embeddings,
|
285 |
-
sample_name_sentence_similarities,
|
286 |
-
)
|
287 |
-
df_predicted = nameMappingHelper.map_standard_names()
|
288 |
-
# Create output dataframe and save to CSV
|
289 |
-
print("Columns of inputData.dataframe", inputData.dataframe.columns)
|
290 |
-
column_to_keep = ['シート名', '行', '科目', '分類', '名称', '摘要', '備考']
|
291 |
-
output_df = inputData.dataframe[column_to_keep].copy()
|
292 |
-
output_df.reset_index(drop=False, inplace=True)
|
293 |
-
output_df.loc[:, "出力_科目"] = df_predicted["出力_科目"]
|
294 |
-
output_df.loc[:, "出力_項目名"] = df_predicted["出力_項目名"]
|
295 |
-
output_df.loc[:, "出力_確率度"] = df_predicted["出力_確率度"]
|
296 |
-
|
297 |
-
# Save with utf_8_sig encoding for Japanese Excel compatibility
|
298 |
-
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
|
299 |
-
|
300 |
-
# Return the file as a download with correct content type and headers
|
301 |
-
return FileResponse(
|
302 |
-
path=output_file_path,
|
303 |
-
filename=f"output_{Path(file.filename).stem}.csv",
|
304 |
-
media_type="text/csv",
|
305 |
-
headers={
|
306 |
-
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
|
307 |
-
"Content-Type": "application/x-www-form-urlencoded",
|
308 |
-
},
|
309 |
-
)
|
310 |
-
|
311 |
-
except Exception as e:
|
312 |
-
print(f"Error processing file: {e}")
|
313 |
-
traceback.print_exc()
|
314 |
-
raise HTTPException(status_code=500, detail=str(e))
|
315 |
-
|
316 |
-
|
317 |
if __name__ == "__main__":
|
|
|
318 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
+
from fastapi import FastAPI
|
|
|
|
|
|
|
4 |
import uvicorn
|
5 |
import traceback
|
|
|
|
|
|
|
6 |
from contextlib import asynccontextmanager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
sys.path.append(os.path.join(current_dir, "meisai-check-ai"))
|
10 |
|
11 |
+
from routes import auth, predict, health
|
12 |
+
from services.sentence_transformer_service import sentence_transformer_service
|
13 |
+
from utils import create_directories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@asynccontextmanager
|
17 |
async def lifespan(app: FastAPI):
|
18 |
"""Lifespan context manager for startup and shutdown events"""
|
|
|
|
|
|
|
19 |
try:
|
20 |
+
# Load models and data ONCE at startup
|
21 |
+
sentence_transformer_service.load_model_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
except Exception as e:
|
23 |
print(f"Error during startup: {e}")
|
24 |
traceback.print_exc()
|
25 |
|
26 |
+
yield # App chạy tại đây
|
27 |
|
|
|
28 |
print("Shutting down application")
|
29 |
|
30 |
+
# Initialize FastAPI
|
31 |
+
app = FastAPI(
|
32 |
+
title="MeisaiCheck API",
|
33 |
+
description="API for MeisaiCheck AI System",
|
34 |
+
version="1.0",
|
35 |
+
lifespan=lifespan,
|
36 |
+
openapi_tags=[
|
37 |
+
{"name": "Health", "description": "Health check endpoints"},
|
38 |
+
{"name": "Authentication", "description": "User authentication and token management"},
|
39 |
+
{"name": "Prediction", "description": " Predict and process CSV files"},
|
40 |
+
]
|
41 |
+
)
|
42 |
|
43 |
+
# Include Routers
|
44 |
+
app.include_router(health.router, tags=["Health"])
|
45 |
+
app.include_router(auth.router, tags=["Authentication"])
|
46 |
+
app.include_router(predict.router, tags=["Prediction"])
|
47 |
|
48 |
|
49 |
+
@app.get("/", tags=["Health"])
|
50 |
async def root():
|
51 |
return {"message": "Hello World"}
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if __name__ == "__main__":
|
54 |
+
create_directories()
|
55 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
models.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
class Token(BaseModel):
|
5 |
+
access_token: str
|
6 |
+
token_type: str
|
7 |
+
|
8 |
+
class TokenData(BaseModel):
|
9 |
+
username: Optional[str] = None
|
10 |
+
|
11 |
+
class User(BaseModel):
|
12 |
+
username: str
|
13 |
+
email: Optional[str] = None
|
14 |
+
full_name: Optional[str] = None
|
15 |
+
disabled: Optional[bool] = None
|
16 |
+
|
17 |
+
class UserInDB(User):
|
18 |
+
hashed_password: str
|
routes/__init__.py
ADDED
File without changes
|
routes/auth.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter, Depends, HTTPException, status
|
2 |
+
from fastapi.security import OAuth2PasswordRequestForm
|
3 |
+
from datetime import timedelta
|
4 |
+
from auth import authenticate_user, create_access_token
|
5 |
+
from models import Token
|
6 |
+
from config import ACCESS_TOKEN_EXPIRE_HOURS
|
7 |
+
from database import users_db
|
8 |
+
|
9 |
+
router = APIRouter()
|
10 |
+
|
11 |
+
@router.post("/token", response_model=Token)
|
12 |
+
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()):
|
13 |
+
"""
|
14 |
+
Endpoint để lấy access token bằng username và password
|
15 |
+
"""
|
16 |
+
user = authenticate_user(users_db, form_data.username, form_data.password)
|
17 |
+
if not user:
|
18 |
+
raise HTTPException(
|
19 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
20 |
+
detail="Incorrect username or password",
|
21 |
+
headers={"WWW-Authenticate": "Bearer"},
|
22 |
+
)
|
23 |
+
|
24 |
+
access_token_expires = timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
|
25 |
+
access_token = create_access_token(
|
26 |
+
data={"sub": user.username}, expires_delta=access_token_expires
|
27 |
+
)
|
28 |
+
return Token(access_token=access_token, token_type="bearer")
|
routes/health.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import APIRouter
|
2 |
+
import time
|
3 |
+
|
4 |
+
router = APIRouter()
|
5 |
+
|
6 |
+
@router.get("/health")
|
7 |
+
async def health_check():
|
8 |
+
return {"status": "ok", "timestamp": time.time()}
|
routes/predict.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import shutil
|
4 |
+
from pathlib import Path
|
5 |
+
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends
|
6 |
+
from fastapi.responses import FileResponse
|
7 |
+
from auth import get_current_user
|
8 |
+
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
|
9 |
+
from data_lib.input_name_data import InputNameData
|
10 |
+
from mapping_lib.name_mapping_helper import NameMappingHelper
|
11 |
+
from config import UPLOAD_DIR, OUTPUT_DIR
|
12 |
+
|
13 |
+
router = APIRouter()
|
14 |
+
|
15 |
+
@router.post("/predict")
|
16 |
+
async def predict(
|
17 |
+
current_user=Depends(get_current_user),
|
18 |
+
file: UploadFile = File(...),
|
19 |
+
sentence_service: SentenceTransformerService = Depends(lambda: sentence_transformer_service)
|
20 |
+
):
|
21 |
+
"""
|
22 |
+
Process an input CSV file and return standardized names (requires authentication)
|
23 |
+
"""
|
24 |
+
if not file.filename.endswith(".csv"):
|
25 |
+
raise HTTPException(status_code=400, detail="Only CSV files are supported")
|
26 |
+
|
27 |
+
# Save uploaded file
|
28 |
+
timestamp = int(time.time())
|
29 |
+
input_file_path = os.path.join(UPLOAD_DIR, f"input_{timestamp}_{current_user.username}.csv")
|
30 |
+
output_file_path = os.path.join(OUTPUT_DIR, f"output_{timestamp}_{current_user.username}.csv")
|
31 |
+
|
32 |
+
try:
|
33 |
+
with open(input_file_path, "wb") as buffer:
|
34 |
+
shutil.copyfileobj(file.file, buffer)
|
35 |
+
finally:
|
36 |
+
file.file.close()
|
37 |
+
|
38 |
+
try:
|
39 |
+
# Process input data
|
40 |
+
inputData = InputNameData(sentence_service.dic_standard_subject)
|
41 |
+
inputData.load_data_from_csv(input_file_path)
|
42 |
+
inputData.process_data()
|
43 |
+
|
44 |
+
# Map standard names
|
45 |
+
nameMappingHelper = NameMappingHelper(
|
46 |
+
sentence_service.sentenceTransformerHelper,
|
47 |
+
inputData,
|
48 |
+
sentence_service.sampleData,
|
49 |
+
sentence_service.sample_name_sentence_embeddings,
|
50 |
+
sentence_service.sample_name_sentence_similarities,
|
51 |
+
)
|
52 |
+
df_predicted = nameMappingHelper.map_standard_names()
|
53 |
+
|
54 |
+
# Create output dataframe and save to CSV
|
55 |
+
column_to_keep = ['シート名', '行', '科目', '分類', '名称', '摘要', '備考']
|
56 |
+
output_df = inputData.dataframe[column_to_keep].copy()
|
57 |
+
output_df.reset_index(drop=False, inplace=True)
|
58 |
+
output_df.loc[:, "出力_科目"] = df_predicted["出力_科目"]
|
59 |
+
output_df.loc[:, "出力_項目名"] = df_predicted["出力_項目名"]
|
60 |
+
output_df.loc[:, "出力_確率度"] = df_predicted["出力_確率度"]
|
61 |
+
|
62 |
+
# Save with utf_8_sig encoding for Japanese Excel compatibility
|
63 |
+
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
|
64 |
+
|
65 |
+
return FileResponse(
|
66 |
+
path=output_file_path,
|
67 |
+
filename=f"output_{Path(file.filename).stem}.csv",
|
68 |
+
media_type="text/csv",
|
69 |
+
headers={
|
70 |
+
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
|
71 |
+
"Content-Type": "application/x-www-form-urlencoded",
|
72 |
+
},
|
73 |
+
)
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error processing file: {e}")
|
77 |
+
raise HTTPException(status_code=500, detail=str(e))
|
services/__init__.py
ADDED
File without changes
|
services/sentence_transformer_service.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from config import (
|
3 |
+
MODEL_NAME,
|
4 |
+
SETENCE_EMBEDDING_FILE,
|
5 |
+
SETENCE_SIMILARITY_FILE,
|
6 |
+
SAMPLE_DATA_FILE, SUBJECT_DATA_FILE
|
7 |
+
)
|
8 |
+
from sentence_transformer_lib.sentence_transformer_helper import SentenceTransformerHelper
|
9 |
+
from data_lib.subject_data import SubjectData
|
10 |
+
from data_lib.sample_name_data import SampleNameData
|
11 |
+
from clustering_lib.sentence_clustering_lib import SentenceClusteringLib
|
12 |
+
from data_lib.base_data import COL_STANDARD_NAME_KEY, COL_STANDARD_SUBJECT, COL_STANDARD_NAME
|
13 |
+
|
14 |
+
class SentenceTransformerService:
|
15 |
+
def __init__(self):
|
16 |
+
self.sentenceTransformerHelper = None
|
17 |
+
self.dic_standard_subject = None
|
18 |
+
self.sample_name_sentence_embeddings = None
|
19 |
+
self.sample_name_sentence_similarities = None
|
20 |
+
self.sampleData = None
|
21 |
+
self.sentence_clustering_lib = None
|
22 |
+
self.name_groups = None
|
23 |
+
|
24 |
+
def load_model_data(self):
|
25 |
+
"""Load model and data only once at startup"""
|
26 |
+
if self.sentenceTransformerHelper is not None:
|
27 |
+
print("Model already loaded. Skipping reload.")
|
28 |
+
return # Không load lại nếu đã có model
|
29 |
+
|
30 |
+
print("Loading models and data...")
|
31 |
+
# Load sentence transformer model
|
32 |
+
self.sentenceTransformerHelper = SentenceTransformerHelper(
|
33 |
+
convert_to_zenkaku_flag=True, replace_words=None, keywords=None
|
34 |
+
)
|
35 |
+
self.sentenceTransformerHelper.load_model_by_name(MODEL_NAME)
|
36 |
+
|
37 |
+
# Load standard subject dictionary
|
38 |
+
self.dic_standard_subject = SubjectData.create_standard_subject_dic_from_file(SUBJECT_DATA_FILE)
|
39 |
+
|
40 |
+
# Load pre-computed embeddings and similarities
|
41 |
+
with open(SETENCE_EMBEDDING_FILE, "rb") as f:
|
42 |
+
self.sample_name_sentence_embeddings = pickle.load(f)
|
43 |
+
|
44 |
+
with open(SETENCE_SIMILARITY_FILE, "rb") as f:
|
45 |
+
self.sample_name_sentence_similarities = pickle.load(f)
|
46 |
+
|
47 |
+
# Load and process sample data
|
48 |
+
self.sampleData = SampleNameData()
|
49 |
+
self.sampleData.load_data_from_csv(SAMPLE_DATA_FILE)
|
50 |
+
self.sampleData.process_data()
|
51 |
+
|
52 |
+
# Create sentence clusters
|
53 |
+
self.sentence_clustering_lib = SentenceClusteringLib(self.sample_name_sentence_embeddings)
|
54 |
+
best_name_eps = 0.07
|
55 |
+
self.name_groups, _ = self.sentence_clustering_lib.create_sentence_cluster(best_name_eps)
|
56 |
+
|
57 |
+
self.sampleData._create_key_column(
|
58 |
+
COL_STANDARD_NAME_KEY, COL_STANDARD_SUBJECT, COL_STANDARD_NAME
|
59 |
+
)
|
60 |
+
self.sampleData.set_name_sentence_labels(self.name_groups)
|
61 |
+
self.sampleData.build_search_tree()
|
62 |
+
|
63 |
+
print("Models and data loaded successfully")
|
64 |
+
|
65 |
+
# Global instance (singleton)
|
66 |
+
sentence_transformer_service = SentenceTransformerService()
|
utils.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from config import DATA_DIR, UPLOAD_DIR, OUTPUT_DIR
|
3 |
+
|
4 |
+
def create_directories():
|
5 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
6 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
7 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|