Spaces:
Running
Running
fix raw predict
Browse files- models.py +6 -1
- routes/predict.py +45 -8
models.py
CHANGED
|
@@ -37,9 +37,14 @@ class PredictRecord(BaseModel):
|
|
| 37 |
|
| 38 |
|
| 39 |
class PredictResult(BaseModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
standard_subject: str
|
| 41 |
standard_name: str
|
| 42 |
-
anchor_name: str
|
| 43 |
similarity_score: float
|
| 44 |
|
| 45 |
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
class PredictResult(BaseModel):
|
| 40 |
+
subject: str
|
| 41 |
+
sub_subject: str
|
| 42 |
+
name_category: str
|
| 43 |
+
name: str
|
| 44 |
+
abstract: Optional[str] = None
|
| 45 |
+
memo: Optional[str] = None
|
| 46 |
standard_subject: str
|
| 47 |
standard_name: str
|
|
|
|
| 48 |
similarity_score: float
|
| 49 |
|
| 50 |
|
routes/predict.py
CHANGED
|
@@ -181,31 +181,68 @@ async def predict_raw(
|
|
| 181 |
inputData = InputNameData(sentence_service.dic_standard_subject)
|
| 182 |
# Use _add_raw_data instead of direct assignment
|
| 183 |
inputData._add_raw_data(df)
|
| 184 |
-
inputData.process_data(sentence_service.sentenceTransformerHelper)
|
| 185 |
except Exception as e:
|
| 186 |
print(f"Error processing input data: {e}")
|
| 187 |
raise HTTPException(status_code=500, detail=str(e))
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
# Map standard names
|
| 190 |
try:
|
| 191 |
nameMapper = NameMapper(
|
| 192 |
sentence_service.sentenceTransformerHelper,
|
| 193 |
sentence_service.standardNameMapData,
|
| 194 |
-
top_count=3
|
| 195 |
)
|
| 196 |
df_predicted = nameMapper.predict(inputData)
|
| 197 |
except Exception as e:
|
| 198 |
print(f"Error mapping standard names: {e}")
|
|
|
|
| 199 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
# Convert results to response format
|
| 202 |
results = []
|
| 203 |
-
for _, row in
|
| 204 |
result = PredictResult(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
)
|
| 210 |
results.append(result)
|
| 211 |
|
|
|
|
| 181 |
inputData = InputNameData(sentence_service.dic_standard_subject)
|
| 182 |
# Use _add_raw_data instead of direct assignment
|
| 183 |
inputData._add_raw_data(df)
|
|
|
|
| 184 |
except Exception as e:
|
| 185 |
print(f"Error processing input data: {e}")
|
| 186 |
raise HTTPException(status_code=500, detail=str(e))
|
| 187 |
+
try:
|
| 188 |
+
subject_mapper = SubjectMapper(
|
| 189 |
+
sentence_transformer_helper=sentence_service.sentenceTransformerHelper,
|
| 190 |
+
dic_subject_map=sentence_service.dic_standard_subject,
|
| 191 |
+
similarity_threshold=0.9,
|
| 192 |
+
)
|
| 193 |
+
dic_subject_map = subject_mapper.map_standard_subjects(inputData.dataframe)
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"Error processing SubjectMapper: {e}")
|
| 196 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 197 |
+
try:
|
| 198 |
+
inputData.dic_standard_subject = dic_subject_map
|
| 199 |
+
inputData.process_data()
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Error processing inputData process_data: {e}")
|
| 202 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 203 |
# Map standard names
|
| 204 |
try:
|
| 205 |
nameMapper = NameMapper(
|
| 206 |
sentence_service.sentenceTransformerHelper,
|
| 207 |
sentence_service.standardNameMapData,
|
| 208 |
+
top_count=3
|
| 209 |
)
|
| 210 |
df_predicted = nameMapper.predict(inputData)
|
| 211 |
except Exception as e:
|
| 212 |
print(f"Error mapping standard names: {e}")
|
| 213 |
+
traceback.print_exc()
|
| 214 |
raise HTTPException(status_code=500, detail=str(e))
|
| 215 |
+
|
| 216 |
+
important_columns = ['確定', '標準科目', '標準項目名', '基準名称類似度']
|
| 217 |
+
for column in important_columns:
|
| 218 |
+
if column not in df_predicted.columns:
|
| 219 |
+
if column != '基準名称類似度':
|
| 220 |
+
df_predicted[column] = ""
|
| 221 |
+
inputData.dataframe[column] = ""
|
| 222 |
+
else:
|
| 223 |
+
df_predicted[column] = 0
|
| 224 |
+
inputData.dataframe[column] = 0
|
| 225 |
+
|
| 226 |
+
column_to_keep = ['シート名', '行', '科目', '中科目', '分類', '名称', '摘要', '備考', '確定']
|
| 227 |
+
output_df = inputData.dataframe[column_to_keep].copy()
|
| 228 |
+
output_df.reset_index(drop=False, inplace=True)
|
| 229 |
+
output_df.loc[:, "出力_科目"] = df_predicted["標準科目"]
|
| 230 |
+
output_df.loc[:, "出力_項目名"] = df_predicted["標準項目名"]
|
| 231 |
+
output_df.loc[:, "出力_確率度"] = df_predicted["基準名称類似度"]
|
| 232 |
|
| 233 |
# Convert results to response format
|
| 234 |
results = []
|
| 235 |
+
for _, row in output_df.iterrows():
|
| 236 |
result = PredictResult(
|
| 237 |
+
subject=row["科目"],
|
| 238 |
+
sub_subject=row["中科目"],
|
| 239 |
+
name_category=row["分類"],
|
| 240 |
+
name=row["名称"],
|
| 241 |
+
abstract=row["摘要"],
|
| 242 |
+
memo=row["備考"],
|
| 243 |
+
standard_subject=row["出力_科目"],
|
| 244 |
+
standard_name=row["出力_項目名"],
|
| 245 |
+
similarity_score=float(row["出力_確率度"]),
|
| 246 |
)
|
| 247 |
results.append(result)
|
| 248 |
|