Spaces:
Running
Running
Refactor validation script to improve file comparison functionality, rename class for clarity, and update documentation. Add file_comparison_report.txt to .gitignore to prevent accidental commits.
Browse files- .gitignore +1 -0
- routes/predict.py +5 -7
- validate_optimization.py +91 -152
.gitignore
CHANGED
|
@@ -35,3 +35,4 @@ outputs/*.csv
|
|
| 35 |
*.model
|
| 36 |
*.bin
|
| 37 |
*.safetensors
|
|
|
|
|
|
| 35 |
*.model
|
| 36 |
*.bin
|
| 37 |
*.safetensors
|
| 38 |
+
file_comparison_report.txt
|
routes/predict.py
CHANGED
|
@@ -289,18 +289,16 @@ async def predict(
|
|
| 289 |
|
| 290 |
# Map output columns to match Excel structure
|
| 291 |
# 出力_中科目 mapping - use the standard sub-subject from sub-subject mapper
|
| 292 |
-
if "出力_
|
|
|
|
|
|
|
| 293 |
df_output_data["出力_中科目"] = df_output_data["出力_基準中科目"]
|
| 294 |
elif "標準中科目" in df_output_data.columns:
|
| 295 |
df_output_data["出力_中科目"] = df_output_data["標準中科目"]
|
| 296 |
|
| 297 |
# 出力_項目名 mapping - use the final item name from name and abstract mapper
|
| 298 |
-
if
|
| 299 |
-
"出力_項目名"
|
| 300 |
-
and not df_output_data["出力_項目名"].isna().all()
|
| 301 |
-
):
|
| 302 |
-
# Keep existing 出力_項目名 if it exists and has values
|
| 303 |
-
pass
|
| 304 |
elif "出力_標準名称" in df_output_data.columns:
|
| 305 |
df_output_data["出力_項目名"] = df_output_data["出力_標準名称"]
|
| 306 |
elif "出力_基準名称" in df_output_data.columns:
|
|
|
|
| 289 |
|
| 290 |
# Map output columns to match Excel structure
|
| 291 |
# 出力_中科目 mapping - use the standard sub-subject from sub-subject mapper
|
| 292 |
+
if "出力_中科目" in df_output_data.columns:
|
| 293 |
+
df_output_data["出力_中科目"] = df_output_data["出力_中科目"]
|
| 294 |
+
elif "出力_基準中科目" in df_output_data.columns:
|
| 295 |
df_output_data["出力_中科目"] = df_output_data["出力_基準中科目"]
|
| 296 |
elif "標準中科目" in df_output_data.columns:
|
| 297 |
df_output_data["出力_中科目"] = df_output_data["標準中科目"]
|
| 298 |
|
| 299 |
# 出力_項目名 mapping - use the final item name from name and abstract mapper
|
| 300 |
+
if "出力_項目名" in df_output_data.columns:
|
| 301 |
+
df_output_data["出力_項目名"] = df_output_data["出力_項目名"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
elif "出力_標準名称" in df_output_data.columns:
|
| 303 |
df_output_data["出力_項目名"] = df_output_data["出力_標準名称"]
|
| 304 |
elif "出力_基準名称" in df_output_data.columns:
|
validate_optimization.py
CHANGED
|
@@ -1,26 +1,23 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Validation script to compare
|
| 4 |
Compares the following columns: 出力_科目, 出力_中科目, 出力_標準名称, 出力_項目名, 出力_標準単位
|
| 5 |
"""
|
| 6 |
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
| 9 |
-
from typing import List, Dict, Tuple
|
| 10 |
import os
|
| 11 |
-
import sys
|
| 12 |
from datetime import datetime
|
| 13 |
|
| 14 |
-
# Add the meisai-check-ai directory to Python path
|
| 15 |
-
sys.path.append(os.path.join(os.path.dirname(__file__), 'meisai-check-ai'))
|
| 16 |
|
| 17 |
-
class
|
| 18 |
def __init__(self, original_file_path: str):
|
| 19 |
"""
|
| 20 |
-
Initialize
|
| 21 |
-
|
| 22 |
Args:
|
| 23 |
-
original_file_path: Path to
|
| 24 |
"""
|
| 25 |
self.original_file_path = original_file_path
|
| 26 |
self.comparison_columns = [
|
|
@@ -30,7 +27,7 @@ class OptimizationValidator:
|
|
| 30 |
'出力_項目名',
|
| 31 |
'出力_標準単位'
|
| 32 |
]
|
| 33 |
-
|
| 34 |
def load_original_data(self) -> pd.DataFrame:
|
| 35 |
"""Load original output data"""
|
| 36 |
try:
|
|
@@ -40,21 +37,23 @@ class OptimizationValidator:
|
|
| 40 |
except Exception as e:
|
| 41 |
print(f"✗ Error loading original data: {e}")
|
| 42 |
raise
|
| 43 |
-
|
| 44 |
-
def compare_dataframes(
|
|
|
|
|
|
|
| 45 |
"""
|
| 46 |
Compare original vs optimized dataframes
|
| 47 |
|
| 48 |
Returns:
|
| 49 |
Dict with comparison results
|
| 50 |
"""
|
| 51 |
-
results = {
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
}
|
| 57 |
-
|
| 58 |
# Check if dataframes have same length
|
| 59 |
if len(df_original) != len(df_optimized):
|
| 60 |
results['length_mismatch'] = {
|
|
@@ -62,53 +61,57 @@ class OptimizationValidator:
|
|
| 62 |
'optimized': len(df_optimized)
|
| 63 |
}
|
| 64 |
print(f"⚠ Warning: Different number of rows - Original: {len(df_original)}, Optimized: {len(df_optimized)}")
|
| 65 |
-
|
| 66 |
# Compare each column
|
| 67 |
for col in self.comparison_columns:
|
| 68 |
if col not in df_original.columns:
|
| 69 |
results['differences'][col] = f"Column not found in original data"
|
| 70 |
continue
|
| 71 |
-
|
| 72 |
if col not in df_optimized.columns:
|
| 73 |
results['differences'][col] = f"Column not found in optimized data"
|
| 74 |
continue
|
| 75 |
-
|
| 76 |
# Fill NaN values with empty string for comparison
|
| 77 |
original_values = df_original[col].fillna('')
|
| 78 |
optimized_values = df_optimized[col].fillna('')
|
| 79 |
-
|
| 80 |
# Compare values
|
| 81 |
differences = original_values != optimized_values
|
| 82 |
diff_count = differences.sum()
|
| 83 |
-
|
| 84 |
results['differences'][col] = {
|
| 85 |
'total_differences': int(diff_count),
|
| 86 |
'accuracy_percentage': round((1 - diff_count / len(df_original)) * 100, 2),
|
| 87 |
'different_indices': differences[differences].index.tolist()[:10] # Show first 10 different indices
|
| 88 |
}
|
| 89 |
-
|
| 90 |
if diff_count > 0:
|
| 91 |
print(f"⚠ {col}: {diff_count} differences ({results['differences'][col]['accuracy_percentage']}% accuracy)")
|
| 92 |
else:
|
| 93 |
print(f"✓ {col}: Perfect match (100% accuracy)")
|
| 94 |
-
|
| 95 |
# Overall summary
|
| 96 |
total_differences = sum([results['differences'][col]['total_differences']
|
| 97 |
for col in self.comparison_columns
|
| 98 |
if isinstance(results['differences'][col], dict)])
|
| 99 |
-
|
| 100 |
overall_accuracy = round((1 - total_differences / (len(df_original) * len(self.comparison_columns))) * 100, 2)
|
| 101 |
-
|
| 102 |
results['summary'] = {
|
| 103 |
'total_differences': total_differences,
|
| 104 |
'overall_accuracy': overall_accuracy,
|
| 105 |
'perfect_match': total_differences == 0
|
| 106 |
}
|
| 107 |
-
|
| 108 |
return results
|
| 109 |
-
|
| 110 |
-
def generate_difference_report(
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
"""
|
| 113 |
Generate detailed difference report
|
| 114 |
|
|
@@ -122,32 +125,32 @@ class OptimizationValidator:
|
|
| 122 |
"""
|
| 123 |
report_lines = []
|
| 124 |
report_lines.append("=" * 80)
|
| 125 |
-
report_lines.append(f"
|
| 126 |
report_lines.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 127 |
report_lines.append("=" * 80)
|
| 128 |
-
|
| 129 |
# Basic info
|
| 130 |
report_lines.append(f"Original data rows: {len(df_original)}")
|
| 131 |
-
report_lines.append(f"
|
| 132 |
report_lines.append(f"Columns compared: {', '.join(self.comparison_columns)}")
|
| 133 |
report_lines.append("")
|
| 134 |
-
|
| 135 |
# Compare each column
|
| 136 |
for col in self.comparison_columns:
|
| 137 |
if col not in df_original.columns or col not in df_optimized.columns:
|
| 138 |
report_lines.append(f"❌ {col}: Column missing")
|
| 139 |
continue
|
| 140 |
-
|
| 141 |
original_values = df_original[col].fillna('')
|
| 142 |
optimized_values = df_optimized[col].fillna('')
|
| 143 |
-
|
| 144 |
differences = original_values != optimized_values
|
| 145 |
diff_count = differences.sum()
|
| 146 |
accuracy = round((1 - diff_count / len(df_original)) * 100, 2)
|
| 147 |
-
|
| 148 |
status = "✅" if diff_count == 0 else "⚠️"
|
| 149 |
report_lines.append(f"{status} {col}: {diff_count} differences ({accuracy}% accuracy)")
|
| 150 |
-
|
| 151 |
if diff_count > 0:
|
| 152 |
# Show some examples of differences
|
| 153 |
diff_indices = differences[differences].index[:5]
|
|
@@ -157,7 +160,7 @@ class OptimizationValidator:
|
|
| 157 |
opt_val = str(optimized_values.iloc[idx])[:50]
|
| 158 |
report_lines.append(f" Row {idx}: '{orig_val}' → '{opt_val}'")
|
| 159 |
report_lines.append("")
|
| 160 |
-
|
| 161 |
# Overall summary
|
| 162 |
total_comparisons = len(df_original) * len(self.comparison_columns)
|
| 163 |
total_differences = sum([
|
|
@@ -165,160 +168,96 @@ class OptimizationValidator:
|
|
| 165 |
for col in self.comparison_columns
|
| 166 |
if col in df_original.columns and col in df_optimized.columns
|
| 167 |
])
|
| 168 |
-
|
| 169 |
overall_accuracy = round((1 - total_differences / total_comparisons) * 100, 2)
|
| 170 |
-
|
| 171 |
report_lines.append("=" * 80)
|
| 172 |
report_lines.append(f"OVERALL RESULTS:")
|
| 173 |
report_lines.append(f"Total differences: {total_differences}")
|
| 174 |
report_lines.append(f"Overall accuracy: {overall_accuracy}%")
|
| 175 |
report_lines.append(f"Perfect match: {'Yes' if total_differences == 0 else 'No'}")
|
| 176 |
report_lines.append("=" * 80)
|
| 177 |
-
|
| 178 |
report_text = "\n".join(report_lines)
|
| 179 |
-
|
| 180 |
if output_file:
|
| 181 |
with open(output_file, 'w', encoding='utf-8') as f:
|
| 182 |
f.write(report_text)
|
| 183 |
print(f"📄 Report saved to: {output_file}")
|
| 184 |
-
|
| 185 |
return report_text
|
| 186 |
-
|
| 187 |
-
def validate_optimization(self, optimized_mapper_function, input_data: pd.DataFrame,
|
| 188 |
-
report_file: str = None) -> bool:
|
| 189 |
-
"""
|
| 190 |
-
Run full validation process
|
| 191 |
-
|
| 192 |
-
Args:
|
| 193 |
-
optimized_mapper_function: Function that takes input_data and returns optimized output
|
| 194 |
-
input_data: Input dataframe to process
|
| 195 |
-
report_file: Optional report file path
|
| 196 |
-
|
| 197 |
-
Returns:
|
| 198 |
-
True if validation passes (100% accuracy)
|
| 199 |
-
"""
|
| 200 |
-
print("🔍 Starting optimization validation...")
|
| 201 |
-
|
| 202 |
-
# Load original data
|
| 203 |
-
df_original = self.load_original_data()
|
| 204 |
-
|
| 205 |
-
# Run optimized mapper
|
| 206 |
-
print("🚀 Running optimized mapper...")
|
| 207 |
-
try:
|
| 208 |
-
df_optimized = optimized_mapper_function(input_data)
|
| 209 |
-
print(f"✓ Optimized processing completed: {len(df_optimized)} rows")
|
| 210 |
-
except Exception as e:
|
| 211 |
-
print(f"✗ Error in optimized processing: {e}")
|
| 212 |
-
return False
|
| 213 |
-
|
| 214 |
-
# Compare results
|
| 215 |
-
print("📊 Comparing results...")
|
| 216 |
-
results = self.compare_dataframes(df_original, df_optimized)
|
| 217 |
-
|
| 218 |
-
# Generate report
|
| 219 |
-
if report_file:
|
| 220 |
-
self.generate_difference_report(df_original, df_optimized, report_file)
|
| 221 |
-
|
| 222 |
-
# Print summary
|
| 223 |
-
print("\n" + "="*50)
|
| 224 |
-
print("🎯 VALIDATION SUMMARY")
|
| 225 |
-
print("="*50)
|
| 226 |
-
print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
|
| 227 |
-
print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
|
| 228 |
-
print(f"Total differences: {results['summary']['total_differences']}")
|
| 229 |
-
|
| 230 |
-
return results['summary']['perfect_match']
|
| 231 |
|
| 232 |
-
def compare_two_files(
|
|
|
|
|
|
|
| 233 |
"""
|
| 234 |
Compare two CSV files directly
|
| 235 |
-
|
| 236 |
Args:
|
| 237 |
-
|
| 238 |
report_file: Optional report file path
|
| 239 |
-
|
| 240 |
Returns:
|
| 241 |
-
True if
|
| 242 |
"""
|
| 243 |
-
print("🔍 Starting file comparison
|
| 244 |
-
|
| 245 |
# Load original data
|
| 246 |
df_original = self.load_original_data()
|
| 247 |
-
|
| 248 |
-
# Load
|
| 249 |
try:
|
| 250 |
-
|
| 251 |
-
print(f"✓ Loaded
|
| 252 |
except Exception as e:
|
| 253 |
-
print(f"✗ Error loading
|
| 254 |
return False
|
| 255 |
-
|
| 256 |
# Compare results
|
| 257 |
print("📊 Comparing results...")
|
| 258 |
-
results = self.compare_dataframes(df_original,
|
| 259 |
-
|
| 260 |
# Generate report
|
| 261 |
if report_file:
|
| 262 |
-
self.generate_difference_report(df_original,
|
| 263 |
-
|
| 264 |
# Print summary
|
| 265 |
print("\n" + "="*50)
|
| 266 |
-
print("🎯
|
| 267 |
print("="*50)
|
| 268 |
print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
|
| 269 |
print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
|
| 270 |
print(f"Total differences: {results['summary']['total_differences']}")
|
| 271 |
-
|
| 272 |
return results['summary']['perfect_match']
|
| 273 |
|
|
|
|
| 274 |
def main():
|
| 275 |
-
"""
|
| 276 |
-
#
|
| 277 |
original_file = "data/outputData_original.csv"
|
| 278 |
-
|
| 279 |
-
|
| 280 |
if not os.path.exists(original_file):
|
| 281 |
print(f"❌ Original file not found: {original_file}")
|
| 282 |
-
print("Please ensure
|
| 283 |
return
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
df_result['出力_項目名'] = df_result.get('名称', '')
|
| 299 |
-
df_result['出力_標準単位'] = df_result.get('単位', '')
|
| 300 |
-
|
| 301 |
-
return df_result
|
| 302 |
-
|
| 303 |
-
# Load input data
|
| 304 |
-
if os.path.exists(input_file):
|
| 305 |
-
input_data = pd.read_csv(input_file)
|
| 306 |
-
|
| 307 |
-
# Run validation
|
| 308 |
-
is_valid = validator.validate_optimization(
|
| 309 |
-
example_optimized_mapper,
|
| 310 |
-
input_data,
|
| 311 |
-
"optimization_validation_report.txt"
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
if is_valid:
|
| 315 |
-
print("🎉 Validation PASSED! Optimization maintains accuracy.")
|
| 316 |
-
else:
|
| 317 |
-
print("❌ Validation FAILED! Check the report for details.")
|
| 318 |
else:
|
| 319 |
-
print(
|
| 320 |
-
print("You can also compare two CSV files directly:")
|
| 321 |
-
print("validator.compare_two_files('optimized_output.csv', 'report.txt')")
|
| 322 |
|
| 323 |
if __name__ == "__main__":
|
| 324 |
-
main()
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Validation script to compare two CSV files
|
| 4 |
Compares the following columns: 出力_科目, 出力_中科目, 出力_標準名称, 出力_項目名, 出力_標準単位
|
| 5 |
"""
|
| 6 |
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
| 9 |
+
from typing import List, Dict, Tuple, Optional, Any
|
| 10 |
import os
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
class FileComparator:
|
| 15 |
def __init__(self, original_file_path: str):
|
| 16 |
"""
|
| 17 |
+
Initialize comparator with original output file
|
| 18 |
+
|
| 19 |
Args:
|
| 20 |
+
original_file_path: Path to original CSV file
|
| 21 |
"""
|
| 22 |
self.original_file_path = original_file_path
|
| 23 |
self.comparison_columns = [
|
|
|
|
| 27 |
'出力_項目名',
|
| 28 |
'出力_標準単位'
|
| 29 |
]
|
| 30 |
+
|
| 31 |
def load_original_data(self) -> pd.DataFrame:
|
| 32 |
"""Load original output data"""
|
| 33 |
try:
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
print(f"✗ Error loading original data: {e}")
|
| 39 |
raise
|
| 40 |
+
|
| 41 |
+
def compare_dataframes(
|
| 42 |
+
self, df_original: pd.DataFrame, df_optimized: pd.DataFrame
|
| 43 |
+
) -> Dict[str, Any]:
|
| 44 |
"""
|
| 45 |
Compare original vs optimized dataframes
|
| 46 |
|
| 47 |
Returns:
|
| 48 |
Dict with comparison results
|
| 49 |
"""
|
| 50 |
+
results: Dict[str, Any] = {
|
| 51 |
+
"total_rows": len(df_original),
|
| 52 |
+
"columns_compared": self.comparison_columns,
|
| 53 |
+
"differences": {},
|
| 54 |
+
"summary": {},
|
| 55 |
}
|
| 56 |
+
|
| 57 |
# Check if dataframes have same length
|
| 58 |
if len(df_original) != len(df_optimized):
|
| 59 |
results['length_mismatch'] = {
|
|
|
|
| 61 |
'optimized': len(df_optimized)
|
| 62 |
}
|
| 63 |
print(f"⚠ Warning: Different number of rows - Original: {len(df_original)}, Optimized: {len(df_optimized)}")
|
| 64 |
+
|
| 65 |
# Compare each column
|
| 66 |
for col in self.comparison_columns:
|
| 67 |
if col not in df_original.columns:
|
| 68 |
results['differences'][col] = f"Column not found in original data"
|
| 69 |
continue
|
| 70 |
+
|
| 71 |
if col not in df_optimized.columns:
|
| 72 |
results['differences'][col] = f"Column not found in optimized data"
|
| 73 |
continue
|
| 74 |
+
|
| 75 |
# Fill NaN values with empty string for comparison
|
| 76 |
original_values = df_original[col].fillna('')
|
| 77 |
optimized_values = df_optimized[col].fillna('')
|
| 78 |
+
|
| 79 |
# Compare values
|
| 80 |
differences = original_values != optimized_values
|
| 81 |
diff_count = differences.sum()
|
| 82 |
+
|
| 83 |
results['differences'][col] = {
|
| 84 |
'total_differences': int(diff_count),
|
| 85 |
'accuracy_percentage': round((1 - diff_count / len(df_original)) * 100, 2),
|
| 86 |
'different_indices': differences[differences].index.tolist()[:10] # Show first 10 different indices
|
| 87 |
}
|
| 88 |
+
|
| 89 |
if diff_count > 0:
|
| 90 |
print(f"⚠ {col}: {diff_count} differences ({results['differences'][col]['accuracy_percentage']}% accuracy)")
|
| 91 |
else:
|
| 92 |
print(f"✓ {col}: Perfect match (100% accuracy)")
|
| 93 |
+
|
| 94 |
# Overall summary
|
| 95 |
total_differences = sum([results['differences'][col]['total_differences']
|
| 96 |
for col in self.comparison_columns
|
| 97 |
if isinstance(results['differences'][col], dict)])
|
| 98 |
+
|
| 99 |
overall_accuracy = round((1 - total_differences / (len(df_original) * len(self.comparison_columns))) * 100, 2)
|
| 100 |
+
|
| 101 |
results['summary'] = {
|
| 102 |
'total_differences': total_differences,
|
| 103 |
'overall_accuracy': overall_accuracy,
|
| 104 |
'perfect_match': total_differences == 0
|
| 105 |
}
|
| 106 |
+
|
| 107 |
return results
|
| 108 |
+
|
| 109 |
+
def generate_difference_report(
|
| 110 |
+
self,
|
| 111 |
+
df_original: pd.DataFrame,
|
| 112 |
+
df_optimized: pd.DataFrame,
|
| 113 |
+
output_file: Optional[str] = None,
|
| 114 |
+
) -> str:
|
| 115 |
"""
|
| 116 |
Generate detailed difference report
|
| 117 |
|
|
|
|
| 125 |
"""
|
| 126 |
report_lines = []
|
| 127 |
report_lines.append("=" * 80)
|
| 128 |
+
report_lines.append(f"FILE COMPARISON REPORT")
|
| 129 |
report_lines.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 130 |
report_lines.append("=" * 80)
|
| 131 |
+
|
| 132 |
# Basic info
|
| 133 |
report_lines.append(f"Original data rows: {len(df_original)}")
|
| 134 |
+
report_lines.append(f"Compared data rows: {len(df_optimized)}")
|
| 135 |
report_lines.append(f"Columns compared: {', '.join(self.comparison_columns)}")
|
| 136 |
report_lines.append("")
|
| 137 |
+
|
| 138 |
# Compare each column
|
| 139 |
for col in self.comparison_columns:
|
| 140 |
if col not in df_original.columns or col not in df_optimized.columns:
|
| 141 |
report_lines.append(f"❌ {col}: Column missing")
|
| 142 |
continue
|
| 143 |
+
|
| 144 |
original_values = df_original[col].fillna('')
|
| 145 |
optimized_values = df_optimized[col].fillna('')
|
| 146 |
+
|
| 147 |
differences = original_values != optimized_values
|
| 148 |
diff_count = differences.sum()
|
| 149 |
accuracy = round((1 - diff_count / len(df_original)) * 100, 2)
|
| 150 |
+
|
| 151 |
status = "✅" if diff_count == 0 else "⚠️"
|
| 152 |
report_lines.append(f"{status} {col}: {diff_count} differences ({accuracy}% accuracy)")
|
| 153 |
+
|
| 154 |
if diff_count > 0:
|
| 155 |
# Show some examples of differences
|
| 156 |
diff_indices = differences[differences].index[:5]
|
|
|
|
| 160 |
opt_val = str(optimized_values.iloc[idx])[:50]
|
| 161 |
report_lines.append(f" Row {idx}: '{orig_val}' → '{opt_val}'")
|
| 162 |
report_lines.append("")
|
| 163 |
+
|
| 164 |
# Overall summary
|
| 165 |
total_comparisons = len(df_original) * len(self.comparison_columns)
|
| 166 |
total_differences = sum([
|
|
|
|
| 168 |
for col in self.comparison_columns
|
| 169 |
if col in df_original.columns and col in df_optimized.columns
|
| 170 |
])
|
| 171 |
+
|
| 172 |
overall_accuracy = round((1 - total_differences / total_comparisons) * 100, 2)
|
| 173 |
+
|
| 174 |
report_lines.append("=" * 80)
|
| 175 |
report_lines.append(f"OVERALL RESULTS:")
|
| 176 |
report_lines.append(f"Total differences: {total_differences}")
|
| 177 |
report_lines.append(f"Overall accuracy: {overall_accuracy}%")
|
| 178 |
report_lines.append(f"Perfect match: {'Yes' if total_differences == 0 else 'No'}")
|
| 179 |
report_lines.append("=" * 80)
|
| 180 |
+
|
| 181 |
report_text = "\n".join(report_lines)
|
| 182 |
+
|
| 183 |
if output_file:
|
| 184 |
with open(output_file, 'w', encoding='utf-8') as f:
|
| 185 |
f.write(report_text)
|
| 186 |
print(f"📄 Report saved to: {output_file}")
|
| 187 |
+
|
| 188 |
return report_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
def compare_two_files(
|
| 191 |
+
self, second_file_path: str, report_file: Optional[str] = None
|
| 192 |
+
) -> bool:
|
| 193 |
"""
|
| 194 |
Compare two CSV files directly
|
| 195 |
+
|
| 196 |
Args:
|
| 197 |
+
second_file_path: Path to second CSV file to compare
|
| 198 |
report_file: Optional report file path
|
| 199 |
+
|
| 200 |
Returns:
|
| 201 |
+
True if files match perfectly (100% accuracy)
|
| 202 |
"""
|
| 203 |
+
print("🔍 Starting file comparison...")
|
| 204 |
+
|
| 205 |
# Load original data
|
| 206 |
df_original = self.load_original_data()
|
| 207 |
+
|
| 208 |
+
# Load second file
|
| 209 |
try:
|
| 210 |
+
df_second = pd.read_csv(second_file_path)
|
| 211 |
+
print(f"✓ Loaded second file: {len(df_second)} rows")
|
| 212 |
except Exception as e:
|
| 213 |
+
print(f"✗ Error loading second file: {e}")
|
| 214 |
return False
|
| 215 |
+
|
| 216 |
# Compare results
|
| 217 |
print("📊 Comparing results...")
|
| 218 |
+
results = self.compare_dataframes(df_original, df_second)
|
| 219 |
+
|
| 220 |
# Generate report
|
| 221 |
if report_file:
|
| 222 |
+
self.generate_difference_report(df_original, df_second, report_file)
|
| 223 |
+
|
| 224 |
# Print summary
|
| 225 |
print("\n" + "="*50)
|
| 226 |
+
print("🎯 COMPARISON SUMMARY")
|
| 227 |
print("="*50)
|
| 228 |
print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
|
| 229 |
print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
|
| 230 |
print(f"Total differences: {results['summary']['total_differences']}")
|
| 231 |
+
|
| 232 |
return results['summary']['perfect_match']
|
| 233 |
|
| 234 |
+
|
| 235 |
def main():
|
| 236 |
+
"""Main function to compare two files"""
|
| 237 |
+
# File paths
|
| 238 |
original_file = "data/outputData_original.csv"
|
| 239 |
+
second_file = "data/outputData_api_v2.csv"
|
| 240 |
+
|
| 241 |
if not os.path.exists(original_file):
|
| 242 |
print(f"❌ Original file not found: {original_file}")
|
| 243 |
+
print("Please ensure the original file exists")
|
| 244 |
return
|
| 245 |
+
|
| 246 |
+
if not os.path.exists(second_file):
|
| 247 |
+
print(f"❌ Second file not found: {second_file}")
|
| 248 |
+
print("Please ensure the second file exists")
|
| 249 |
+
return
|
| 250 |
+
|
| 251 |
+
# Initialize comparator
|
| 252 |
+
comparator = FileComparator(original_file)
|
| 253 |
+
|
| 254 |
+
# Compare files
|
| 255 |
+
is_match = comparator.compare_two_files(second_file, "file_comparison_report.txt")
|
| 256 |
+
|
| 257 |
+
if is_match:
|
| 258 |
+
print("🎉 Files MATCH perfectly!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
else:
|
| 260 |
+
print("❌ Files have differences. Check the report for details.")
|
|
|
|
|
|
|
| 261 |
|
| 262 |
if __name__ == "__main__":
|
| 263 |
+
main()
|