Spaces:
Running
Running
Vu Minh Chien
commited on
Commit
·
06d9f7d
1
Parent(s):
5a202c5
change predict rule
Browse files- Dockerfile +2 -2
- routes/predict.py +118 -109
- validate_optimization.py +2 -2
Dockerfile
CHANGED
|
@@ -28,8 +28,8 @@ COPY requirements.txt .
|
|
| 28 |
RUN --mount=type=secret,id=BITBUCKET_APP_PW,mode=0444,required=true \
|
| 29 |
git clone https://vumichien:$(cat /run/secrets/BITBUCKET_APP_PW)@bitbucket.org/dtm-partners/meisai-check-ai.git && \
|
| 30 |
cd meisai-check-ai && \
|
| 31 |
-
git checkout
|
| 32 |
-
git pull origin
|
| 33 |
cd ..
|
| 34 |
|
| 35 |
# Cài đặt dependencies
|
|
|
|
| 28 |
RUN --mount=type=secret,id=BITBUCKET_APP_PW,mode=0444,required=true \
|
| 29 |
git clone https://vumichien:$(cat /run/secrets/BITBUCKET_APP_PW)@bitbucket.org/dtm-partners/meisai-check-ai.git && \
|
| 30 |
cd meisai-check-ai && \
|
| 31 |
+
git checkout staging && \
|
| 32 |
+
git pull origin staging && \
|
| 33 |
cd ..
|
| 34 |
|
| 35 |
# Cài đặt dependencies
|
routes/predict.py
CHANGED
|
@@ -21,8 +21,14 @@ from mapping_lib.sub_subject_and_name_data_mapper import SubSubjectAndNameDataMa
|
|
| 21 |
from mapping_lib.sub_subject_location_data_mapper import SubSubjectLocationDataMapper
|
| 22 |
from mapping_lib.abstract_similarity_mapper import AbstractSimilarityMapper
|
| 23 |
from mapping_lib.name_and_abstract_mapper import NameAndAbstractDataMapper
|
| 24 |
-
from mapping_lib.
|
| 25 |
-
from mapping_lib.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
| 28 |
from models import (
|
|
@@ -65,6 +71,21 @@ async def predict(
|
|
| 65 |
# Load input data
|
| 66 |
start_time = time.time()
|
| 67 |
df_input_data = pd.read_csv(input_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# Ensure basic columns exist with default values
|
| 70 |
basic_columns = {
|
|
@@ -83,9 +104,8 @@ async def predict(
|
|
| 83 |
if col not in df_input_data.columns:
|
| 84 |
df_input_data[col] = default_value
|
| 85 |
|
| 86 |
-
#
|
| 87 |
try:
|
| 88 |
-
# Subject mapping
|
| 89 |
if sentence_service.df_subject_map_data is not None:
|
| 90 |
subject_similarity_mapper = SubjectSimilarityMapper(
|
| 91 |
cached_embedding_helper=sentence_service.subject_cached_embedding_helper,
|
|
@@ -93,35 +113,29 @@ async def predict(
|
|
| 93 |
)
|
| 94 |
|
| 95 |
list_input_subject = df_input_data["科目"].unique()
|
| 96 |
-
df_subject_data = pd.DataFrame(
|
| 97 |
|
| 98 |
-
subject_similarity_mapper.
|
| 99 |
|
| 100 |
-
output_subject_map = dict(
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
df_input_data
|
| 104 |
-
output_subject_map
|
| 105 |
-
)
|
| 106 |
-
df_input_data["出力_科目"] = df_input_data["科目"].map(
|
| 107 |
-
output_subject_map
|
| 108 |
-
)
|
| 109 |
|
| 110 |
except Exception as e:
|
| 111 |
print(f"Error processing SubjectSimilarityMapper: {e}")
|
| 112 |
raise HTTPException(status_code=500, detail=str(e))
|
| 113 |
|
|
|
|
| 114 |
try:
|
| 115 |
-
# Standard subject mapping
|
| 116 |
if sentence_service.df_standard_subject_map_data is not None:
|
| 117 |
standard_subject_data_mapper = StandardSubjectDataMapper(
|
| 118 |
df_map_data=sentence_service.df_standard_subject_map_data
|
| 119 |
)
|
| 120 |
df_output_data = standard_subject_data_mapper.map_data(
|
| 121 |
-
df_input_data=df_input_data,
|
| 122 |
-
input_key_columns=["出力_科目"],
|
| 123 |
-
in_place=True,
|
| 124 |
)
|
|
|
|
| 125 |
else:
|
| 126 |
df_output_data = df_input_data.copy()
|
| 127 |
|
|
@@ -130,131 +144,127 @@ async def predict(
|
|
| 130 |
# Continue with original data if standard subject mapping fails
|
| 131 |
df_output_data = df_input_data.copy()
|
| 132 |
|
|
|
|
| 133 |
try:
|
| 134 |
-
# Sub subject mapping
|
| 135 |
if sentence_service.df_sub_subject_map_data is not None:
|
| 136 |
sub_subject_similarity_mapper = SubSubjectSimilarityMapper(
|
| 137 |
cached_embedding_helper=sentence_service.sub_subject_cached_embedding_helper,
|
| 138 |
df_map_data=sentence_service.df_sub_subject_map_data,
|
| 139 |
)
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
-
df_output_data
|
| 144 |
|
| 145 |
except Exception as e:
|
| 146 |
print(f"Error processing SubSubjectSimilarityMapper: {e}")
|
| 147 |
raise HTTPException(status_code=500, detail=str(e))
|
| 148 |
|
| 149 |
-
|
| 150 |
try:
|
| 151 |
-
# Name mapping
|
| 152 |
if sentence_service.df_name_map_data is not None:
|
| 153 |
name_sentence_mapper = NameSimilarityMapper(
|
| 154 |
cached_embedding_helper=sentence_service.name_cached_embedding_helper,
|
| 155 |
df_map_data=sentence_service.df_name_map_data,
|
| 156 |
)
|
| 157 |
-
name_sentence_mapper.
|
|
|
|
| 158 |
|
| 159 |
except Exception as e:
|
| 160 |
print(f"Error processing NameSimilarityMapper: {e}")
|
| 161 |
raise HTTPException(status_code=500, detail=str(e))
|
| 162 |
-
try:
|
| 163 |
-
sub_subject_location_mapper = SubSubjectLocationDataMapper()
|
| 164 |
-
sub_subject_location_mapper.map_location(df_output_data)
|
| 165 |
-
except Exception as e:
|
| 166 |
-
print(f"Error processing SubSubjectLocationDataMapper: {e}")
|
| 167 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 168 |
|
|
|
|
| 169 |
try:
|
| 170 |
-
# Sub subject and name mapping
|
| 171 |
if sentence_service.df_sub_subject_and_name_map_data is not None:
|
| 172 |
-
|
| 173 |
df_map_data=sentence_service.df_sub_subject_and_name_map_data
|
| 174 |
)
|
| 175 |
-
|
| 176 |
|
| 177 |
except Exception as e:
|
| 178 |
print(f"Error processing SubSubjectAndNameDataMapper: {e}")
|
| 179 |
raise HTTPException(status_code=500, detail=str(e))
|
| 180 |
|
|
|
|
| 181 |
try:
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
for col in ["標準科目", "摘要グループ", "確定", "摘要", "備考"]:
|
| 203 |
-
if col in df_output_data.columns:
|
| 204 |
-
df_output_data[col] = df_output_data[col].astype(str).fillna("")
|
| 205 |
|
|
|
|
|
|
|
|
|
|
| 206 |
abstract_similarity_mapper = AbstractSimilarityMapper(
|
| 207 |
cached_embedding_helper=sentence_service.abstract_cached_embedding_helper,
|
| 208 |
df_map_data=sentence_service.df_abstract_map_data,
|
| 209 |
)
|
| 210 |
-
abstract_similarity_mapper.
|
| 211 |
-
|
| 212 |
-
print(f"DEBUG: AbstractSimilarityMapper completed successfully")
|
| 213 |
|
| 214 |
except Exception as e:
|
| 215 |
print(f"Error processing AbstractSimilarityMapper: {e}")
|
| 216 |
print(f"DEBUG: Full error traceback:")
|
| 217 |
-
import traceback
|
| 218 |
-
|
| 219 |
traceback.print_exc()
|
| 220 |
# Don't raise the exception, continue processing
|
| 221 |
print(f"DEBUG: Continuing without AbstractSimilarityMapper...")
|
| 222 |
|
|
|
|
| 223 |
try:
|
| 224 |
-
# Name and abstract mapping
|
| 225 |
if sentence_service.df_name_and_subject_map_data is not None:
|
| 226 |
name_and_abstract_mapper = NameAndAbstractDataMapper(
|
| 227 |
df_map_data=sentence_service.df_name_and_subject_map_data
|
| 228 |
)
|
| 229 |
-
df_output_data =
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
except Exception as e:
|
| 232 |
print(f"Error processing NameAndAbstractDataMapper: {e}")
|
| 233 |
raise HTTPException(status_code=500, detail=str(e))
|
| 234 |
|
|
|
|
| 235 |
try:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
|
| 240 |
-
df_map_data=sentence_service.df_unit_map_data,
|
| 241 |
-
)
|
| 242 |
-
unit_mapper.predict_input_optimized(df_input_data=df_output_data)
|
| 243 |
-
|
| 244 |
-
except Exception as e:
|
| 245 |
-
print(f"Error processing UnitMapper: {e}")
|
| 246 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 247 |
-
|
| 248 |
-
try:
|
| 249 |
-
# Standard name mapping
|
| 250 |
-
if sentence_service.df_standard_name_map_data is not None:
|
| 251 |
-
standard_name_mapper = StandardNameMapper(
|
| 252 |
-
df_map_data=sentence_service.df_standard_name_map_data
|
| 253 |
-
)
|
| 254 |
-
df_output_data = standard_name_mapper.map_data(df_output_data)
|
| 255 |
-
|
| 256 |
except Exception as e:
|
| 257 |
-
print(f"Error processing
|
| 258 |
raise HTTPException(status_code=500, detail=str(e))
|
| 259 |
|
| 260 |
# Create output columns and ensure they have proper values
|
|
@@ -286,7 +296,6 @@ async def predict(
|
|
| 286 |
for col, default_value in required_columns.items():
|
| 287 |
if col not in df_output_data.columns:
|
| 288 |
df_output_data[col] = default_value
|
| 289 |
-
|
| 290 |
# Map output columns to match Excel structure
|
| 291 |
# 出力_中科目 mapping - use the standard sub-subject from sub-subject mapper
|
| 292 |
if "出力_中科目" in df_output_data.columns:
|
|
@@ -331,26 +340,26 @@ async def predict(
|
|
| 331 |
print(f"Available columns after processing: {list(df_output_data.columns)}")
|
| 332 |
|
| 333 |
# Final check and fallback for missing output columns
|
| 334 |
-
if (
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
):
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
if (
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
):
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
if (
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
):
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
if "出力_確率度" not in df_output_data.columns:
|
| 353 |
-
|
| 354 |
|
| 355 |
# Define output columns in exact order as shown in Excel
|
| 356 |
output_columns = [
|
|
@@ -511,14 +520,14 @@ async def predict_raw(
|
|
| 511 |
try:
|
| 512 |
# Unit mapping
|
| 513 |
if sentence_service.df_unit_map_data is not None:
|
| 514 |
-
unit_mapper =
|
| 515 |
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
|
| 516 |
df_map_data=sentence_service.df_unit_map_data,
|
| 517 |
)
|
| 518 |
unit_mapper.predict_input(df_input_data=df_input_data)
|
| 519 |
|
| 520 |
except Exception as e:
|
| 521 |
-
print(f"Error processing
|
| 522 |
raise HTTPException(status_code=500, detail=str(e))
|
| 523 |
|
| 524 |
# Ensure required columns exist
|
|
|
|
| 21 |
from mapping_lib.sub_subject_location_data_mapper import SubSubjectLocationDataMapper
|
| 22 |
from mapping_lib.abstract_similarity_mapper import AbstractSimilarityMapper
|
| 23 |
from mapping_lib.name_and_abstract_mapper import NameAndAbstractDataMapper
|
| 24 |
+
from mapping_lib.unit_mapper import UnitMapper
|
| 25 |
+
from mapping_lib.base_dictionary_mapper import BaseDictionaryMapper
|
| 26 |
+
from common_lib.data_utilities import fillna_with_space
|
| 27 |
+
from common_lib.string_utilities import (
|
| 28 |
+
preprocess_text,
|
| 29 |
+
ConversionType,
|
| 30 |
+
ConversionSettings,
|
| 31 |
+
)
|
| 32 |
|
| 33 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
| 34 |
from models import (
|
|
|
|
| 71 |
# Load input data
|
| 72 |
start_time = time.time()
|
| 73 |
df_input_data = pd.read_csv(input_file_path)
|
| 74 |
+
|
| 75 |
+
# Preprocess data like in meisai-check-ai/predict.py
|
| 76 |
+
df_input_data["元名称"] = df_input_data["名称"]
|
| 77 |
+
df_input_data["名称"] = df_input_data["名称"].apply(
|
| 78 |
+
lambda x: (
|
| 79 |
+
preprocess_text(
|
| 80 |
+
x,
|
| 81 |
+
convert_kana=ConversionType.Z2H,
|
| 82 |
+
convert_alphabet=ConversionType.Z2H,
|
| 83 |
+
convert_digit=ConversionType.Z2H,
|
| 84 |
+
)
|
| 85 |
+
if pd.notna(x)
|
| 86 |
+
else ""
|
| 87 |
+
)
|
| 88 |
+
)
|
| 89 |
|
| 90 |
# Ensure basic columns exist with default values
|
| 91 |
basic_columns = {
|
|
|
|
| 104 |
if col not in df_input_data.columns:
|
| 105 |
df_input_data[col] = default_value
|
| 106 |
|
| 107 |
+
# SubjectSimilarityMapper
|
| 108 |
try:
|
|
|
|
| 109 |
if sentence_service.df_subject_map_data is not None:
|
| 110 |
subject_similarity_mapper = SubjectSimilarityMapper(
|
| 111 |
cached_embedding_helper=sentence_service.subject_cached_embedding_helper,
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
list_input_subject = df_input_data["科目"].unique()
|
| 116 |
+
df_subject_data = pd.DataFrame(list_input_subject, columns=["科目"])
|
| 117 |
|
| 118 |
+
subject_similarity_mapper.predict_input(df_input_data=df_subject_data)
|
| 119 |
|
| 120 |
+
output_subject_map = dict(zip(df_subject_data["科目"], df_subject_data["出力_科目"]))
|
| 121 |
+
df_input_data["標準科目"] = df_input_data["科目"].map(output_subject_map)
|
| 122 |
+
df_input_data["出力_科目"] = df_input_data["標準科目"]
|
| 123 |
+
fillna_with_space(df_input_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
except Exception as e:
|
| 126 |
print(f"Error processing SubjectSimilarityMapper: {e}")
|
| 127 |
raise HTTPException(status_code=500, detail=str(e))
|
| 128 |
|
| 129 |
+
# StandardSubjectDataMapper
|
| 130 |
try:
|
|
|
|
| 131 |
if sentence_service.df_standard_subject_map_data is not None:
|
| 132 |
standard_subject_data_mapper = StandardSubjectDataMapper(
|
| 133 |
df_map_data=sentence_service.df_standard_subject_map_data
|
| 134 |
)
|
| 135 |
df_output_data = standard_subject_data_mapper.map_data(
|
| 136 |
+
df_input_data=df_input_data, input_key_columns=["出力_科目"], in_place=True
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
+
fillna_with_space(df_output_data)
|
| 139 |
else:
|
| 140 |
df_output_data = df_input_data.copy()
|
| 141 |
|
|
|
|
| 144 |
# Continue with original data if standard subject mapping fails
|
| 145 |
df_output_data = df_input_data.copy()
|
| 146 |
|
| 147 |
+
# SubSubjectSimilarityMapper
|
| 148 |
try:
|
|
|
|
| 149 |
if sentence_service.df_sub_subject_map_data is not None:
|
| 150 |
sub_subject_similarity_mapper = SubSubjectSimilarityMapper(
|
| 151 |
cached_embedding_helper=sentence_service.sub_subject_cached_embedding_helper,
|
| 152 |
df_map_data=sentence_service.df_sub_subject_map_data,
|
| 153 |
)
|
| 154 |
+
df_input_sub_subject = df_output_data[
|
| 155 |
+
["科目", "標準科目", "出力_科目", "中科目", "分類"]
|
| 156 |
+
].drop_duplicates()
|
| 157 |
+
sub_subject_similarity_mapper.predict_input(df_input_data=df_input_sub_subject)
|
| 158 |
+
|
| 159 |
+
sub_subject_map_key_columns = ["科目", "標準科目", "出力_科目", "中科目", "分類"]
|
| 160 |
+
sub_subject_map_data_columns = [
|
| 161 |
+
"出力_基準中科目",
|
| 162 |
+
"出力_中科目類似度",
|
| 163 |
+
"出力_中科目",
|
| 164 |
+
"外部・内部区分",
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
+
sub_subject_data_mapper = BaseDictionaryMapper(
|
| 168 |
+
df_input_sub_subject, sub_subject_map_key_columns, sub_subject_map_data_columns
|
| 169 |
+
)
|
| 170 |
+
sub_subject_data_mapper.map_data(
|
| 171 |
+
df_input_data=df_output_data,
|
| 172 |
+
input_key_columns=sub_subject_map_key_columns,
|
| 173 |
+
in_place=True,
|
| 174 |
)
|
| 175 |
+
fillna_with_space(df_output_data)
|
| 176 |
|
| 177 |
except Exception as e:
|
| 178 |
print(f"Error processing SubSubjectSimilarityMapper: {e}")
|
| 179 |
raise HTTPException(status_code=500, detail=str(e))
|
| 180 |
|
| 181 |
+
# NameSimilarityMapper
|
| 182 |
try:
|
|
|
|
| 183 |
if sentence_service.df_name_map_data is not None:
|
| 184 |
name_sentence_mapper = NameSimilarityMapper(
|
| 185 |
cached_embedding_helper=sentence_service.name_cached_embedding_helper,
|
| 186 |
df_map_data=sentence_service.df_name_map_data,
|
| 187 |
)
|
| 188 |
+
name_sentence_mapper.predict_input(df_input_data=df_output_data)
|
| 189 |
+
fillna_with_space(df_output_data)
|
| 190 |
|
| 191 |
except Exception as e:
|
| 192 |
print(f"Error processing NameSimilarityMapper: {e}")
|
| 193 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
# SubSubjectAndNameDataMapper
|
| 196 |
try:
|
|
|
|
| 197 |
if sentence_service.df_sub_subject_and_name_map_data is not None:
|
| 198 |
+
sub_subject_and_name_data_mapper = SubSubjectAndNameDataMapper(
|
| 199 |
df_map_data=sentence_service.df_sub_subject_and_name_map_data
|
| 200 |
)
|
| 201 |
+
sub_subject_and_name_data_mapper.map_data(df_input_data=df_output_data)
|
| 202 |
|
| 203 |
except Exception as e:
|
| 204 |
print(f"Error processing SubSubjectAndNameDataMapper: {e}")
|
| 205 |
raise HTTPException(status_code=500, detail=str(e))
|
| 206 |
|
| 207 |
+
# UnitMapper
|
| 208 |
try:
|
| 209 |
+
if sentence_service.df_unit_map_data is not None:
|
| 210 |
+
unit_similarity_mapper = UnitMapper(
|
| 211 |
+
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
|
| 212 |
+
df_map_data=sentence_service.df_unit_map_data,
|
| 213 |
+
)
|
| 214 |
+
unit_map_key_columns = ["単位"]
|
| 215 |
+
df_input_unit = df_input_data[unit_map_key_columns].drop_duplicates()
|
| 216 |
+
unit_similarity_mapper.predict_input(df_input_data=df_input_unit)
|
| 217 |
+
|
| 218 |
+
output_unit_data_columns = ["出力_基準単位", "出力_単位類似度", "出力_集計用単位", "出力_標準単位"]
|
| 219 |
+
unit_data_mapper = BaseDictionaryMapper(
|
| 220 |
+
df_input_unit, unit_map_key_columns, output_unit_data_columns
|
| 221 |
+
)
|
| 222 |
+
_ = unit_data_mapper.map_data(
|
| 223 |
+
df_input_data=df_output_data, input_key_columns=unit_map_key_columns, in_place=True
|
| 224 |
+
)
|
| 225 |
+
fillna_with_space(df_output_data)
|
| 226 |
+
except Exception as e:
|
| 227 |
+
print(f"Error processing UnitMapper: {e}")
|
| 228 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
+
# AbstractSimilarityMapper
|
| 231 |
+
try:
|
| 232 |
+
if sentence_service.df_abstract_map_data is not None:
|
| 233 |
abstract_similarity_mapper = AbstractSimilarityMapper(
|
| 234 |
cached_embedding_helper=sentence_service.abstract_cached_embedding_helper,
|
| 235 |
df_map_data=sentence_service.df_abstract_map_data,
|
| 236 |
)
|
| 237 |
+
abstract_similarity_mapper.predict_input(df_input_data=df_output_data)
|
|
|
|
|
|
|
| 238 |
|
| 239 |
except Exception as e:
|
| 240 |
print(f"Error processing AbstractSimilarityMapper: {e}")
|
| 241 |
print(f"DEBUG: Full error traceback:")
|
|
|
|
|
|
|
| 242 |
traceback.print_exc()
|
| 243 |
# Don't raise the exception, continue processing
|
| 244 |
print(f"DEBUG: Continuing without AbstractSimilarityMapper...")
|
| 245 |
|
| 246 |
+
# NameAndAbstractDataMapper
|
| 247 |
try:
|
|
|
|
| 248 |
if sentence_service.df_name_and_subject_map_data is not None:
|
| 249 |
name_and_abstract_mapper = NameAndAbstractDataMapper(
|
| 250 |
df_map_data=sentence_service.df_name_and_subject_map_data
|
| 251 |
)
|
| 252 |
+
df_output_data["出力_項目名"] = df_output_data["出力_標準名称"]
|
| 253 |
+
_ = name_and_abstract_mapper.map_data(df_output_data)
|
| 254 |
+
fillna_with_space(df_output_data)
|
| 255 |
+
df_output_data["出力_項目名(中科目抜き)"] = df_output_data["出力_項目名"]
|
| 256 |
|
| 257 |
except Exception as e:
|
| 258 |
print(f"Error processing NameAndAbstractDataMapper: {e}")
|
| 259 |
raise HTTPException(status_code=500, detail=str(e))
|
| 260 |
|
| 261 |
+
# SubSubjectLocationDataMapper
|
| 262 |
try:
|
| 263 |
+
sub_subject_location_mapper = SubSubjectLocationDataMapper()
|
| 264 |
+
sub_subject_location_mapper.map_location(df_output_data)
|
| 265 |
+
df_output_data["名称"] = df_output_data["元名称"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
except Exception as e:
|
| 267 |
+
print(f"Error processing SubSubjectLocationDataMapper: {e}")
|
| 268 |
raise HTTPException(status_code=500, detail=str(e))
|
| 269 |
|
| 270 |
# Create output columns and ensure they have proper values
|
|
|
|
| 296 |
for col, default_value in required_columns.items():
|
| 297 |
if col not in df_output_data.columns:
|
| 298 |
df_output_data[col] = default_value
|
|
|
|
| 299 |
# Map output columns to match Excel structure
|
| 300 |
# 出力_中科目 mapping - use the standard sub-subject from sub-subject mapper
|
| 301 |
if "出力_中科目" in df_output_data.columns:
|
|
|
|
| 340 |
print(f"Available columns after processing: {list(df_output_data.columns)}")
|
| 341 |
|
| 342 |
# Final check and fallback for missing output columns
|
| 343 |
+
# if (
|
| 344 |
+
# "出力_中科目" not in df_output_data.columns
|
| 345 |
+
# or df_output_data["出力_中科目"].eq("").all()
|
| 346 |
+
# ):
|
| 347 |
+
# df_output_data["出力_中科目"] = df_output_data.get("中科目", "")
|
| 348 |
+
|
| 349 |
+
# if (
|
| 350 |
+
# "出力_項目名" not in df_output_data.columns
|
| 351 |
+
# or df_output_data["出力_項目名"].eq("").all()
|
| 352 |
+
# ):
|
| 353 |
+
# df_output_data["出力_項目名"] = df_output_data.get("名称", "")
|
| 354 |
+
|
| 355 |
+
# if (
|
| 356 |
+
# "出力_単位" not in df_output_data.columns
|
| 357 |
+
# or df_output_data["出力_単位"].eq("").all()
|
| 358 |
+
# ):
|
| 359 |
+
# df_output_data["出力_単位"] = df_output_data.get("単位", "")
|
| 360 |
+
|
| 361 |
+
# if "出力_確率度" not in df_output_data.columns:
|
| 362 |
+
# df_output_data["出力_確率度"] = 0 # Default confidence score
|
| 363 |
|
| 364 |
# Define output columns in exact order as shown in Excel
|
| 365 |
output_columns = [
|
|
|
|
| 520 |
try:
|
| 521 |
# Unit mapping
|
| 522 |
if sentence_service.df_unit_map_data is not None:
|
| 523 |
+
unit_mapper = UnitMapper(
|
| 524 |
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
|
| 525 |
df_map_data=sentence_service.df_unit_map_data,
|
| 526 |
)
|
| 527 |
unit_mapper.predict_input(df_input_data=df_input_data)
|
| 528 |
|
| 529 |
except Exception as e:
|
| 530 |
+
print(f"Error processing UnitMapper: {e}")
|
| 531 |
raise HTTPException(status_code=500, detail=str(e))
|
| 532 |
|
| 533 |
# Ensure required columns exist
|
validate_optimization.py
CHANGED
|
@@ -25,7 +25,7 @@ class FileComparator:
|
|
| 25 |
'出力_中科目',
|
| 26 |
'出力_標準名称',
|
| 27 |
'出力_項目名',
|
| 28 |
-
'出力_
|
| 29 |
]
|
| 30 |
|
| 31 |
def load_original_data(self) -> pd.DataFrame:
|
|
@@ -236,7 +236,7 @@ def main():
|
|
| 236 |
"""Main function to compare two files"""
|
| 237 |
# File paths
|
| 238 |
original_file = "data/outputData_original.csv"
|
| 239 |
-
second_file = "data/
|
| 240 |
|
| 241 |
if not os.path.exists(original_file):
|
| 242 |
print(f"❌ Original file not found: {original_file}")
|
|
|
|
| 25 |
'出力_中科目',
|
| 26 |
'出力_標準名称',
|
| 27 |
'出力_項目名',
|
| 28 |
+
'出力_集計用単位'
|
| 29 |
]
|
| 30 |
|
| 31 |
def load_original_data(self) -> pd.DataFrame:
|
|
|
|
| 236 |
"""Main function to compare two files"""
|
| 237 |
# File paths
|
| 238 |
original_file = "data/outputData_original.csv"
|
| 239 |
+
second_file = "data/outputData_api.csv"
|
| 240 |
|
| 241 |
if not os.path.exists(original_file):
|
| 242 |
print(f"❌ Original file not found: {original_file}")
|