Spaces:
Sleeping
Sleeping
Enhance prediction process by adding missing columns with defaults, ensuring correct data types, and improving error handling. Update cached embeddings with new size.
Browse files- data/cached_embeddings_unit.pkl +2 -2
- routes/predict.py +32 -24
- services/sentence_transformer_service.py +7 -0
data/cached_embeddings_unit.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:917d6d46ef5e75ddca3f081169eb9f9323eab50dbed95583037907c26c855ae0
|
| 3 |
+
size 734106
|
routes/predict.py
CHANGED
|
@@ -174,15 +174,35 @@ async def predict(
|
|
| 174 |
try:
|
| 175 |
# Abstract mapping
|
| 176 |
if sentence_service.df_abstract_map_data is not None:
|
| 177 |
-
# Ensure required columns exist
|
| 178 |
required_columns_for_abstract = {
|
|
|
|
| 179 |
"摘要グループ": "",
|
| 180 |
-
"確定": "",
|
|
|
|
|
|
|
| 181 |
}
|
| 182 |
|
| 183 |
-
|
|
|
|
| 184 |
if col not in df_output_data.columns:
|
| 185 |
-
df_output_data[col] =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
abstract_similarity_mapper = AbstractSimilarityMapper(
|
| 188 |
cached_embedding_helper=sentence_service.abstract_cached_embedding_helper,
|
|
@@ -190,9 +210,16 @@ async def predict(
|
|
| 190 |
)
|
| 191 |
abstract_similarity_mapper.predict_input(df_input_data=df_output_data)
|
| 192 |
|
|
|
|
|
|
|
| 193 |
except Exception as e:
|
| 194 |
print(f"Error processing AbstractSimilarityMapper: {e}")
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
try:
|
| 198 |
# Name and abstract mapping
|
|
@@ -290,25 +317,6 @@ async def predict(
|
|
| 290 |
# Fill NaN values and ensure all output columns have proper values
|
| 291 |
df_output_data = df_output_data.fillna("")
|
| 292 |
|
| 293 |
-
# Convert columns to string to avoid dtype issues
|
| 294 |
-
string_columns = [
|
| 295 |
-
"摘要グループ",
|
| 296 |
-
"確定",
|
| 297 |
-
"出力_基準中科目",
|
| 298 |
-
"出力_中科目",
|
| 299 |
-
"出力_項目名",
|
| 300 |
-
"出力_標準名称",
|
| 301 |
-
"出力_基準名称",
|
| 302 |
-
"出力_単位",
|
| 303 |
-
"出力_集計用単位",
|
| 304 |
-
"出力_標準単位",
|
| 305 |
-
"出力_基準単位",
|
| 306 |
-
"外部・内部区分",
|
| 307 |
-
]
|
| 308 |
-
for col in string_columns:
|
| 309 |
-
if col in df_output_data.columns:
|
| 310 |
-
df_output_data[col] = df_output_data[col].astype(str).replace("nan", "")
|
| 311 |
-
|
| 312 |
# Debug: Print available columns to see what we have
|
| 313 |
print(f"Available columns after processing: {list(df_output_data.columns)}")
|
| 314 |
|
|
|
|
| 174 |
try:
|
| 175 |
# Abstract mapping
|
| 176 |
if sentence_service.df_abstract_map_data is not None:
|
| 177 |
+
# Ensure required columns exist before AbstractSimilarityMapper
|
| 178 |
required_columns_for_abstract = {
|
| 179 |
+
"標準科目": "",
|
| 180 |
"摘要グループ": "",
|
| 181 |
+
"確定": "未確定",
|
| 182 |
+
"摘要": "",
|
| 183 |
+
"備考": "",
|
| 184 |
}
|
| 185 |
|
| 186 |
+
# Add missing columns with appropriate defaults
|
| 187 |
+
for col, default_val in required_columns_for_abstract.items():
|
| 188 |
if col not in df_output_data.columns:
|
| 189 |
+
df_output_data[col] = default_val
|
| 190 |
+
print(
|
| 191 |
+
f"DEBUG: Added missing column '{col}' with default value '{default_val}'"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Ensure data types are correct (convert to string to avoid type issues)
|
| 195 |
+
for col in ["標準科目", "摘要グループ", "確定", "摘要", "備考"]:
|
| 196 |
+
if col in df_output_data.columns:
|
| 197 |
+
df_output_data[col] = df_output_data[col].astype(str).fillna("")
|
| 198 |
+
|
| 199 |
+
# Debug: Print sample data before AbstractSimilarityMapper
|
| 200 |
+
print(f"DEBUG: Sample data before AbstractSimilarityMapper:")
|
| 201 |
+
print(
|
| 202 |
+
df_output_data[["標準科目", "摘要グループ", "確定", "摘要", "備考"]]
|
| 203 |
+
.head(3)
|
| 204 |
+
.to_string()
|
| 205 |
+
)
|
| 206 |
|
| 207 |
abstract_similarity_mapper = AbstractSimilarityMapper(
|
| 208 |
cached_embedding_helper=sentence_service.abstract_cached_embedding_helper,
|
|
|
|
| 210 |
)
|
| 211 |
abstract_similarity_mapper.predict_input(df_input_data=df_output_data)
|
| 212 |
|
| 213 |
+
print(f"DEBUG: AbstractSimilarityMapper completed successfully")
|
| 214 |
+
|
| 215 |
except Exception as e:
|
| 216 |
print(f"Error processing AbstractSimilarityMapper: {e}")
|
| 217 |
+
print(f"DEBUG: Full error traceback:")
|
| 218 |
+
import traceback
|
| 219 |
+
|
| 220 |
+
traceback.print_exc()
|
| 221 |
+
# Don't raise the exception, continue processing
|
| 222 |
+
print(f"DEBUG: Continuing without AbstractSimilarityMapper...")
|
| 223 |
|
| 224 |
try:
|
| 225 |
# Name and abstract mapping
|
|
|
|
| 317 |
# Fill NaN values and ensure all output columns have proper values
|
| 318 |
df_output_data = df_output_data.fillna("")
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
# Debug: Print available columns to see what we have
|
| 321 |
print(f"Available columns after processing: {list(df_output_data.columns)}")
|
| 322 |
|
services/sentence_transformer_service.py
CHANGED
|
@@ -211,6 +211,13 @@ class SentenceTransformerService:
|
|
| 211 |
print(
|
| 212 |
f"Loaded abstract map data: {len(self.df_abstract_map_data)} entries"
|
| 213 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
# Load name and subject map data
|
| 216 |
name_and_subject_map_file = os.path.join(
|
|
|
|
| 211 |
print(
|
| 212 |
f"Loaded abstract map data: {len(self.df_abstract_map_data)} entries"
|
| 213 |
)
|
| 214 |
+
print(
|
| 215 |
+
f"DEBUG: Abstract map data columns: {list(self.df_abstract_map_data.columns)}"
|
| 216 |
+
)
|
| 217 |
+
print(f"DEBUG: Abstract map data sample:")
|
| 218 |
+
print(self.df_abstract_map_data.head(3).to_string())
|
| 219 |
+
else:
|
| 220 |
+
print(f"DEBUG: Abstract map file not found: {abstract_map_file}")
|
| 221 |
|
| 222 |
# Load name and subject map data
|
| 223 |
name_and_subject_map_file = os.path.join(
|