Spaces:
Running
Running
File size: 5,440 Bytes
ca91016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import supervision as sv
from ultralytics import YOLO
import cv2
import numpy as np
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse, Response
import uvicorn
import logging
from datetime import datetime
import os
import time
from collections import defaultdict
# Ensure the logs directory exists
if not os.path.exists("logs"):
os.makedirs("logs")
app = FastAPI()
# Load the exported ONNX model
onnx_model = YOLO("models/best-data-v5.onnx", task="detect")
# Define the logging configuration
LOGGING_CONFIG = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
"access": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"default": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stdout",
},
"file": {
"formatter": "default",
"class": "logging.FileHandler",
"filename": f"logs/{datetime.now().strftime('%Y-%m-%d')}.log",
"mode": "a",
},
"access": {
"formatter": "access",
"class": "logging.StreamHandler",
"stream": "ext://sys.stdout",
},
},
"loggers": {
"": {
"handlers": ["default", "file"],
"level": "INFO",
},
"uvicorn.access": {
"handlers": ["access", "file"],
"level": "INFO",
"propagate": False,
},
"ultralytics": {
"handlers": ["default", "file"],
"level": "INFO",
"propagate": False,
},
}
}
# Apply the logging configuration
logging.config.dictConfig(LOGGING_CONFIG)
def parse_detection(detections):
parsed_rows = []
for i in range(len(detections.xyxy)):
x_min = float(detections.xyxy[i][0])
y_min = float(detections.xyxy[i][1])
x_max = float(detections.xyxy[i][2])
y_max = float(detections.xyxy[i][3])
width = int(x_max - x_min)
height = int(y_max - y_min)
row = {
"top": int(y_min),
"left": int(x_min),
"width": width,
"height": height,
"class_id": ""
if detections.class_id is None
else int(detections.class_id[i]),
"confidence": ""
if detections.confidence is None
else float(detections.confidence[i]),
"tracker_id": ""
if detections.tracker_id is None
else int(detections.tracker_id[i]),
}
if hasattr(detections, "data"):
for key, value in detections.data.items():
row[key] = (
str(value[i])
if hasattr(value, "__getitem__") and value.ndim != 0
else str(value)
)
parsed_rows.append(row)
return parsed_rows
# Run inference
def callback(image_slice: np.ndarray) -> sv.Detections:
# logging.info("Running callback for image slice")
results = onnx_model(image_slice)[0]
return sv.Detections.from_ultralytics(results)
def infer(image):
start_time = time.time()
image_arr = np.frombuffer(image, np.uint8)
image = cv2.imdecode(image_arr, cv2.IMREAD_COLOR)
image = cv2.resize(image, (1920, 1920))
results = onnx_model(image)[0]
# detections = sv.Detections.from_ultralytics(results)
slicer = sv.InferenceSlicer(callback=callback, slice_wh=(640, 640))
detections = slicer(image=image)
logging.info("Completed slicing and detection")
parsed_rows = parse_detection(detections)
# Count the occurrences of each class
class_counts = defaultdict(int)
for detection in parsed_rows:
class_name = detection.get("class_name", "Unknown")
class_counts[class_name] += 1
summary_info = ", ".join(
[f"{count} {class_name}" for class_name, count in class_counts.items()]
)
logging.info(f"Summary info: {summary_info}")
logging.info(f"Run time: {time.time() - start_time:.2f} seconds")
# label_annotator = sv.LabelAnnotator(text_color=sv.Color.BLACK)
bounding_box_annotator = sv.BoundingBoxAnnotator(thickness=4)
annotated_image = image.copy()
annotated_image = bounding_box_annotator.annotate(scene=annotated_image, detections=detections)
# annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
# logging.info("Annotated image")
return annotated_image, parsed_rows
@app.post("/process-image/")
async def process_image(image: UploadFile = File(...), draw_boxes: bool = False):
filename = image.filename
logging.info(f"Received process-image request for file: {filename}")
image_data = await image.read()
annotated_image, results = infer(image_data)
if draw_boxes:
_, img_encoded = cv2.imencode('.jpg', annotated_image)
logging.info("Returning annotated image")
return Response(content=img_encoded.tobytes(), media_type="image/jpeg")
logging.info("Returning JSON results")
return JSONResponse(content=results)
@app.get("/")
def hello_world():
return 'Hello, World!'
if __name__ == "__main__":
uvicorn.run("main:app", port=8001, reload=True)
|