Den-d3j2d's picture
Upload 2 files
542680b verified
import torch
from torch import nn
from torch.nn import init
from transformers import AutoTokenizer, AutoModel
class ProdFeatureEncoder(nn.Module):
"""
Model for creating embeddings with pre-trained ruBERT-tiny BERT.
Attributes:
config (object): Configuration object containing model hyperparameters.
tokenizer (AutoTokenizer): Tokenizer instance for ruBERT-tiny.
model (AutoModel): Pre-trained ruBERT-tiny model instance.
fc (nn.Linear): Linear layer for dimensionality reduction.
"""
def __init__(self, config):
"""
Initializes the ProdFeatureEncoder model.
Args:
config (object): Configuration object containing model hyperparameters.
"""
super().__init__()
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny")
self.model = AutoModel.from_pretrained("cointegrated/rubert-tiny")
self.fc = nn.Linear(self.config.bert_output_size, self.config.embedding_size)
init.xavier_uniform_(self.fc.weight)
self.norm = nn.LayerNorm(self.config.embedding_size)
def forward(self, text: str):
"""
Creates an embedding for the input text.
Args:
text (str): Input text to create an embedding for.
Returns:
torch.Tensor: Embedding vector for the input text.
"""
tokens = self.tokenizer(text, padding=True, truncation=True, return_tensors='pt')
model_output = self.model(**{k: v.to(self.model.device) for k, v in tokens.items()})
embedding = model_output.last_hidden_state[:, 0, :]
embedding = self.fc(embedding)
return embedding[0]