Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import math | |
| from enum import Enum | |
| from typing import Literal, Optional, Type, Union | |
| from typing_extensions import override | |
| import torch | |
| from pydantic import BaseModel, Field | |
| from comfy_api.latest import ComfyExtension, io as comfy_io | |
| from comfy_api_nodes.util.validation_utils import ( | |
| validate_image_aspect_ratio_range, | |
| get_number_of_images, | |
| validate_image_dimensions, | |
| ) | |
| from comfy_api_nodes.apis.client import ( | |
| ApiEndpoint, | |
| EmptyRequest, | |
| HttpMethod, | |
| SynchronousOperation, | |
| PollingOperation, | |
| T, | |
| ) | |
| from comfy_api_nodes.apinode_utils import ( | |
| download_url_to_image_tensor, | |
| download_url_to_video_output, | |
| upload_images_to_comfyapi, | |
| validate_string, | |
| image_tensor_pair_to_batch, | |
| ) | |
| BYTEPLUS_IMAGE_ENDPOINT = "/proxy/byteplus/api/v3/images/generations" | |
| # Long-running tasks endpoints(e.g., video) | |
| BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" | |
| BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id} | |
| class Text2ImageModelName(str, Enum): | |
| seedream_3 = "seedream-3-0-t2i-250415" | |
| class Image2ImageModelName(str, Enum): | |
| seededit_3 = "seededit-3-0-i2i-250628" | |
| class Text2VideoModelName(str, Enum): | |
| seedance_1_pro = "seedance-1-0-pro-250528" | |
| seedance_1_lite = "seedance-1-0-lite-t2v-250428" | |
| class Image2VideoModelName(str, Enum): | |
| """note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757""" | |
| seedance_1_pro = "seedance-1-0-pro-250528" | |
| seedance_1_lite = "seedance-1-0-lite-i2v-250428" | |
| class Text2ImageTaskCreationRequest(BaseModel): | |
| model: Text2ImageModelName = Text2ImageModelName.seedream_3 | |
| prompt: str = Field(...) | |
| response_format: Optional[str] = Field("url") | |
| size: Optional[str] = Field(None) | |
| seed: Optional[int] = Field(0, ge=0, le=2147483647) | |
| guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) | |
| watermark: Optional[bool] = Field(True) | |
| class Image2ImageTaskCreationRequest(BaseModel): | |
| model: Image2ImageModelName = Image2ImageModelName.seededit_3 | |
| prompt: str = Field(...) | |
| response_format: Optional[str] = Field("url") | |
| image: str = Field(..., description="Base64 encoded string or image URL") | |
| size: Optional[str] = Field("adaptive") | |
| seed: Optional[int] = Field(..., ge=0, le=2147483647) | |
| guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0) | |
| watermark: Optional[bool] = Field(True) | |
| class Seedream4Options(BaseModel): | |
| max_images: int = Field(15) | |
| class Seedream4TaskCreationRequest(BaseModel): | |
| model: str = Field("seedream-4-0-250828") | |
| prompt: str = Field(...) | |
| response_format: str = Field("url") | |
| image: Optional[list[str]] = Field(None, description="Image URLs") | |
| size: str = Field(...) | |
| seed: int = Field(..., ge=0, le=2147483647) | |
| sequential_image_generation: str = Field("disabled") | |
| sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15)) | |
| watermark: bool = Field(True) | |
| class ImageTaskCreationResponse(BaseModel): | |
| model: str = Field(...) | |
| created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.") | |
| data: list = Field([], description="Contains information about the generated image(s).") | |
| error: dict = Field({}, description="Contains `code` and `message` fields in case of error.") | |
| class TaskTextContent(BaseModel): | |
| type: str = Field("text") | |
| text: str = Field(...) | |
| class TaskImageContentUrl(BaseModel): | |
| url: str = Field(...) | |
| class TaskImageContent(BaseModel): | |
| type: str = Field("image_url") | |
| image_url: TaskImageContentUrl = Field(...) | |
| role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None) | |
| class Text2VideoTaskCreationRequest(BaseModel): | |
| model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro | |
| content: list[TaskTextContent] = Field(..., min_length=1) | |
| class Image2VideoTaskCreationRequest(BaseModel): | |
| model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro | |
| content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2) | |
| class TaskCreationResponse(BaseModel): | |
| id: str = Field(...) | |
| class TaskStatusError(BaseModel): | |
| code: str = Field(...) | |
| message: str = Field(...) | |
| class TaskStatusResult(BaseModel): | |
| video_url: str = Field(...) | |
| class TaskStatusResponse(BaseModel): | |
| id: str = Field(...) | |
| model: str = Field(...) | |
| status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...) | |
| error: Optional[TaskStatusError] = Field(None) | |
| content: Optional[TaskStatusResult] = Field(None) | |
| RECOMMENDED_PRESETS = [ | |
| ("1024x1024 (1:1)", 1024, 1024), | |
| ("864x1152 (3:4)", 864, 1152), | |
| ("1152x864 (4:3)", 1152, 864), | |
| ("1280x720 (16:9)", 1280, 720), | |
| ("720x1280 (9:16)", 720, 1280), | |
| ("832x1248 (2:3)", 832, 1248), | |
| ("1248x832 (3:2)", 1248, 832), | |
| ("1512x648 (21:9)", 1512, 648), | |
| ("2048x2048 (1:1)", 2048, 2048), | |
| ("Custom", None, None), | |
| ] | |
| RECOMMENDED_PRESETS_SEEDREAM_4 = [ | |
| ("2048x2048 (1:1)", 2048, 2048), | |
| ("2304x1728 (4:3)", 2304, 1728), | |
| ("1728x2304 (3:4)", 1728, 2304), | |
| ("2560x1440 (16:9)", 2560, 1440), | |
| ("1440x2560 (9:16)", 1440, 2560), | |
| ("2496x1664 (3:2)", 2496, 1664), | |
| ("1664x2496 (2:3)", 1664, 2496), | |
| ("3024x1296 (21:9)", 3024, 1296), | |
| ("4096x4096 (1:1)", 4096, 4096), | |
| ("Custom", None, None), | |
| ] | |
| # The time in this dictionary are given for 10 seconds duration. | |
| VIDEO_TASKS_EXECUTION_TIME = { | |
| "seedance-1-0-lite-t2v-250428": { | |
| "480p": 40, | |
| "720p": 60, | |
| "1080p": 90, | |
| }, | |
| "seedance-1-0-lite-i2v-250428": { | |
| "480p": 40, | |
| "720p": 60, | |
| "1080p": 90, | |
| }, | |
| "seedance-1-0-pro-250528": { | |
| "480p": 70, | |
| "720p": 85, | |
| "1080p": 115, | |
| }, | |
| } | |
| def get_image_url_from_response(response: ImageTaskCreationResponse) -> str: | |
| if response.error: | |
| error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}" | |
| logging.info(error_msg) | |
| raise RuntimeError(error_msg) | |
| logging.info("ByteDance task succeeded, image URL: %s", response.data[0]["url"]) | |
| return response.data[0]["url"] | |
| def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]: | |
| """Returns the video URL from the task status response if it exists.""" | |
| if hasattr(response, "content") and response.content: | |
| return response.content.video_url | |
| return None | |
| async def poll_until_finished( | |
| auth_kwargs: dict[str, str], | |
| task_id: str, | |
| estimated_duration: Optional[int] = None, | |
| node_id: Optional[str] = None, | |
| ) -> TaskStatusResponse: | |
| """Polls the ByteDance API endpoint until the task reaches a terminal state, then returns the response.""" | |
| return await PollingOperation( | |
| poll_endpoint=ApiEndpoint( | |
| path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{task_id}", | |
| method=HttpMethod.GET, | |
| request_model=EmptyRequest, | |
| response_model=TaskStatusResponse, | |
| ), | |
| completed_statuses=[ | |
| "succeeded", | |
| ], | |
| failed_statuses=[ | |
| "cancelled", | |
| "failed", | |
| ], | |
| status_extractor=lambda response: response.status, | |
| auth_kwargs=auth_kwargs, | |
| result_url_extractor=get_video_url_from_task_status, | |
| estimated_duration=estimated_duration, | |
| node_id=node_id, | |
| ).execute() | |
| class ByteDanceImageNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceImageNode", | |
| display_name="ByteDance Image", | |
| category="api node/image/ByteDance", | |
| description="Generate images using ByteDance models via api based on prompt", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[model.value for model in Text2ImageModelName], | |
| default=Text2ImageModelName.seedream_3.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| tooltip="The text prompt used to generate the image", | |
| ), | |
| comfy_io.Combo.Input( | |
| "size_preset", | |
| options=[label for label, _, _ in RECOMMENDED_PRESETS], | |
| tooltip="Pick a recommended size. Select Custom to use the width and height below", | |
| ), | |
| comfy_io.Int.Input( | |
| "width", | |
| default=1024, | |
| min=512, | |
| max=2048, | |
| step=64, | |
| tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`", | |
| ), | |
| comfy_io.Int.Input( | |
| "height", | |
| default=1024, | |
| min=512, | |
| max=2048, | |
| step=64, | |
| tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`", | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation", | |
| optional=True, | |
| ), | |
| comfy_io.Float.Input( | |
| "guidance_scale", | |
| default=2.5, | |
| min=1.0, | |
| max=10.0, | |
| step=0.01, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| tooltip="Higher value makes the image follow the prompt more closely", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the image", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Image.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| size_preset: str, | |
| width: int, | |
| height: int, | |
| seed: int, | |
| guidance_scale: float, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| w = h = None | |
| for label, tw, th in RECOMMENDED_PRESETS: | |
| if label == size_preset: | |
| w, h = tw, th | |
| break | |
| if w is None or h is None: | |
| w, h = width, height | |
| if not (512 <= w <= 2048) or not (512 <= h <= 2048): | |
| raise ValueError( | |
| f"Custom size out of range: {w}x{h}. " | |
| "Both width and height must be between 512 and 2048 pixels." | |
| ) | |
| payload = Text2ImageTaskCreationRequest( | |
| model=model, | |
| prompt=prompt, | |
| size=f"{w}x{h}", | |
| seed=seed, | |
| guidance_scale=guidance_scale, | |
| watermark=watermark, | |
| ) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| response = await SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path=BYTEPLUS_IMAGE_ENDPOINT, | |
| method=HttpMethod.POST, | |
| request_model=Text2ImageTaskCreationRequest, | |
| response_model=ImageTaskCreationResponse, | |
| ), | |
| request=payload, | |
| auth_kwargs=auth_kwargs, | |
| ).execute() | |
| return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) | |
| class ByteDanceImageEditNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceImageEditNode", | |
| display_name="ByteDance Image Edit", | |
| category="api node/image/ByteDance", | |
| description="Edit images using ByteDance models via api based on prompt", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[model.value for model in Image2ImageModelName], | |
| default=Image2ImageModelName.seededit_3.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.Image.Input( | |
| "image", | |
| tooltip="The base image to edit", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Instruction to edit image", | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation", | |
| optional=True, | |
| ), | |
| comfy_io.Float.Input( | |
| "guidance_scale", | |
| default=5.5, | |
| min=1.0, | |
| max=10.0, | |
| step=0.01, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| tooltip="Higher value makes the image follow the prompt more closely", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the image", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Image.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| image: torch.Tensor, | |
| prompt: str, | |
| seed: int, | |
| guidance_scale: float, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| if get_number_of_images(image) != 1: | |
| raise ValueError("Exactly one input image is required.") | |
| validate_image_aspect_ratio_range(image, (1, 3), (3, 1)) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| source_url = (await upload_images_to_comfyapi( | |
| image, | |
| max_images=1, | |
| mime_type="image/png", | |
| auth_kwargs=auth_kwargs, | |
| ))[0] | |
| payload = Image2ImageTaskCreationRequest( | |
| model=model, | |
| prompt=prompt, | |
| image=source_url, | |
| seed=seed, | |
| guidance_scale=guidance_scale, | |
| watermark=watermark, | |
| ) | |
| response = await SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path=BYTEPLUS_IMAGE_ENDPOINT, | |
| method=HttpMethod.POST, | |
| request_model=Image2ImageTaskCreationRequest, | |
| response_model=ImageTaskCreationResponse, | |
| ), | |
| request=payload, | |
| auth_kwargs=auth_kwargs, | |
| ).execute() | |
| return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) | |
| class ByteDanceSeedreamNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceSeedreamNode", | |
| display_name="ByteDance Seedream 4", | |
| category="api node/image/ByteDance", | |
| description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=["seedream-4-0-250828"], | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| default="", | |
| tooltip="Text prompt for creating or editing an image.", | |
| ), | |
| comfy_io.Image.Input( | |
| "image", | |
| tooltip="Input image(s) for image-to-image generation. " | |
| "List of 1-10 images for single or multi-reference generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Combo.Input( | |
| "size_preset", | |
| options=[label for label, _, _ in RECOMMENDED_PRESETS_SEEDREAM_4], | |
| tooltip="Pick a recommended size. Select Custom to use the width and height below.", | |
| ), | |
| comfy_io.Int.Input( | |
| "width", | |
| default=2048, | |
| min=1024, | |
| max=4096, | |
| step=64, | |
| tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`", | |
| optional=True, | |
| ), | |
| comfy_io.Int.Input( | |
| "height", | |
| default=2048, | |
| min=1024, | |
| max=4096, | |
| step=64, | |
| tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`", | |
| optional=True, | |
| ), | |
| comfy_io.Combo.Input( | |
| "sequential_image_generation", | |
| options=["disabled", "auto"], | |
| tooltip="Group image generation mode. " | |
| "'disabled' generates a single image. " | |
| "'auto' lets the model decide whether to generate multiple related images " | |
| "(e.g., story scenes, character variations).", | |
| optional=True, | |
| ), | |
| comfy_io.Int.Input( | |
| "max_images", | |
| default=1, | |
| min=1, | |
| max=15, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| tooltip="Maximum number of images to generate when sequential_image_generation='auto'. " | |
| "Total images (input + generated) cannot exceed 15.", | |
| optional=True, | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the image.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Image.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| image: torch.Tensor = None, | |
| size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0], | |
| width: int = 2048, | |
| height: int = 2048, | |
| sequential_image_generation: str = "disabled", | |
| max_images: int = 1, | |
| seed: int = 0, | |
| watermark: bool = True, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| w = h = None | |
| for label, tw, th in RECOMMENDED_PRESETS_SEEDREAM_4: | |
| if label == size_preset: | |
| w, h = tw, th | |
| break | |
| if w is None or h is None: | |
| w, h = width, height | |
| if not (1024 <= w <= 4096) or not (1024 <= h <= 4096): | |
| raise ValueError( | |
| f"Custom size out of range: {w}x{h}. " | |
| "Both width and height must be between 1024 and 4096 pixels." | |
| ) | |
| n_input_images = get_number_of_images(image) if image is not None else 0 | |
| if n_input_images > 10: | |
| raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.") | |
| if sequential_image_generation == "auto" and n_input_images + max_images > 15: | |
| raise ValueError( | |
| "The maximum number of generated images plus the number of reference images cannot exceed 15." | |
| ) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| reference_images_urls = [] | |
| if n_input_images: | |
| for i in image: | |
| validate_image_aspect_ratio_range(i, (1, 3), (3, 1)) | |
| reference_images_urls = (await upload_images_to_comfyapi( | |
| image, | |
| max_images=n_input_images, | |
| mime_type="image/png", | |
| auth_kwargs=auth_kwargs, | |
| )) | |
| payload = Seedream4TaskCreationRequest( | |
| model=model, | |
| prompt=prompt, | |
| image=reference_images_urls, | |
| size=f"{w}x{h}", | |
| seed=seed, | |
| sequential_image_generation=sequential_image_generation, | |
| sequential_image_generation_options=Seedream4Options(max_images=max_images), | |
| watermark=watermark, | |
| ) | |
| response = await SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path=BYTEPLUS_IMAGE_ENDPOINT, | |
| method=HttpMethod.POST, | |
| request_model=Seedream4TaskCreationRequest, | |
| response_model=ImageTaskCreationResponse, | |
| ), | |
| request=payload, | |
| auth_kwargs=auth_kwargs, | |
| ).execute() | |
| if len(response.data) == 1: | |
| return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response))) | |
| return comfy_io.NodeOutput( | |
| torch.cat([await download_url_to_image_tensor(str(i["url"])) for i in response.data]) | |
| ) | |
| class ByteDanceTextToVideoNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceTextToVideoNode", | |
| display_name="ByteDance Text to Video", | |
| category="api node/video/ByteDance", | |
| description="Generate video using ByteDance models via api based on prompt", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[model.value for model in Text2VideoModelName], | |
| default=Text2VideoModelName.seedance_1_pro.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| tooltip="The text prompt used to generate the video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "resolution", | |
| options=["480p", "720p", "1080p"], | |
| tooltip="The resolution of the output video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "aspect_ratio", | |
| options=["16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], | |
| tooltip="The aspect ratio of the output video.", | |
| ), | |
| comfy_io.Int.Input( | |
| "duration", | |
| default=5, | |
| min=3, | |
| max=12, | |
| step=1, | |
| tooltip="The duration of the output video in seconds.", | |
| display_mode=comfy_io.NumberDisplay.slider, | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "camera_fixed", | |
| default=False, | |
| tooltip="Specifies whether to fix the camera. The platform appends an instruction " | |
| "to fix the camera to your prompt, but does not guarantee the actual effect.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the video.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Video.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| resolution: str, | |
| aspect_ratio: str, | |
| duration: int, | |
| seed: int, | |
| camera_fixed: bool, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) | |
| prompt = ( | |
| f"{prompt} " | |
| f"--resolution {resolution} " | |
| f"--ratio {aspect_ratio} " | |
| f"--duration {duration} " | |
| f"--seed {seed} " | |
| f"--camerafixed {str(camera_fixed).lower()} " | |
| f"--watermark {str(watermark).lower()}" | |
| ) | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| return await process_video_task( | |
| request_model=Text2VideoTaskCreationRequest, | |
| payload=Text2VideoTaskCreationRequest( | |
| model=model, | |
| content=[TaskTextContent(text=prompt)], | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), | |
| ) | |
| class ByteDanceImageToVideoNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceImageToVideoNode", | |
| display_name="ByteDance Image to Video", | |
| category="api node/video/ByteDance", | |
| description="Generate video using ByteDance models via api based on image and prompt", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[model.value for model in Image2VideoModelName], | |
| default=Image2VideoModelName.seedance_1_pro.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| tooltip="The text prompt used to generate the video.", | |
| ), | |
| comfy_io.Image.Input( | |
| "image", | |
| tooltip="First frame to be used for the video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "resolution", | |
| options=["480p", "720p", "1080p"], | |
| tooltip="The resolution of the output video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "aspect_ratio", | |
| options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], | |
| tooltip="The aspect ratio of the output video.", | |
| ), | |
| comfy_io.Int.Input( | |
| "duration", | |
| default=5, | |
| min=3, | |
| max=12, | |
| step=1, | |
| tooltip="The duration of the output video in seconds.", | |
| display_mode=comfy_io.NumberDisplay.slider, | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "camera_fixed", | |
| default=False, | |
| tooltip="Specifies whether to fix the camera. The platform appends an instruction " | |
| "to fix the camera to your prompt, but does not guarantee the actual effect.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the video.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Video.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| image: torch.Tensor, | |
| resolution: str, | |
| aspect_ratio: str, | |
| duration: int, | |
| seed: int, | |
| camera_fixed: bool, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) | |
| validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000) | |
| validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth_kwargs))[0] | |
| prompt = ( | |
| f"{prompt} " | |
| f"--resolution {resolution} " | |
| f"--ratio {aspect_ratio} " | |
| f"--duration {duration} " | |
| f"--seed {seed} " | |
| f"--camerafixed {str(camera_fixed).lower()} " | |
| f"--watermark {str(watermark).lower()}" | |
| ) | |
| return await process_video_task( | |
| request_model=Image2VideoTaskCreationRequest, | |
| payload=Image2VideoTaskCreationRequest( | |
| model=model, | |
| content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))], | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), | |
| ) | |
| class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceFirstLastFrameNode", | |
| display_name="ByteDance First-Last-Frame to Video", | |
| category="api node/video/ByteDance", | |
| description="Generate video using prompt and first and last frames.", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[Image2VideoModelName.seedance_1_lite.value], | |
| default=Image2VideoModelName.seedance_1_lite.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| tooltip="The text prompt used to generate the video.", | |
| ), | |
| comfy_io.Image.Input( | |
| "first_frame", | |
| tooltip="First frame to be used for the video.", | |
| ), | |
| comfy_io.Image.Input( | |
| "last_frame", | |
| tooltip="Last frame to be used for the video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "resolution", | |
| options=["480p", "720p", "1080p"], | |
| tooltip="The resolution of the output video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "aspect_ratio", | |
| options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], | |
| tooltip="The aspect ratio of the output video.", | |
| ), | |
| comfy_io.Int.Input( | |
| "duration", | |
| default=5, | |
| min=3, | |
| max=12, | |
| step=1, | |
| tooltip="The duration of the output video in seconds.", | |
| display_mode=comfy_io.NumberDisplay.slider, | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "camera_fixed", | |
| default=False, | |
| tooltip="Specifies whether to fix the camera. The platform appends an instruction " | |
| "to fix the camera to your prompt, but does not guarantee the actual effect.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the video.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Video.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| first_frame: torch.Tensor, | |
| last_frame: torch.Tensor, | |
| resolution: str, | |
| aspect_ratio: str, | |
| duration: int, | |
| seed: int, | |
| camera_fixed: bool, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"]) | |
| for i in (first_frame, last_frame): | |
| validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000) | |
| validate_image_aspect_ratio_range(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| download_urls = await upload_images_to_comfyapi( | |
| image_tensor_pair_to_batch(first_frame, last_frame), | |
| max_images=2, | |
| mime_type="image/png", | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| prompt = ( | |
| f"{prompt} " | |
| f"--resolution {resolution} " | |
| f"--ratio {aspect_ratio} " | |
| f"--duration {duration} " | |
| f"--seed {seed} " | |
| f"--camerafixed {str(camera_fixed).lower()} " | |
| f"--watermark {str(watermark).lower()}" | |
| ) | |
| return await process_video_task( | |
| request_model=Image2VideoTaskCreationRequest, | |
| payload=Image2VideoTaskCreationRequest( | |
| model=model, | |
| content=[ | |
| TaskTextContent(text=prompt), | |
| TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[0])), role="first_frame"), | |
| TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"), | |
| ], | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), | |
| ) | |
| class ByteDanceImageReferenceNode(comfy_io.ComfyNode): | |
| def define_schema(cls): | |
| return comfy_io.Schema( | |
| node_id="ByteDanceImageReferenceNode", | |
| display_name="ByteDance Reference Images to Video", | |
| category="api node/video/ByteDance", | |
| description="Generate video using prompt and reference images.", | |
| inputs=[ | |
| comfy_io.Combo.Input( | |
| "model", | |
| options=[Image2VideoModelName.seedance_1_lite.value], | |
| default=Image2VideoModelName.seedance_1_lite.value, | |
| tooltip="Model name", | |
| ), | |
| comfy_io.String.Input( | |
| "prompt", | |
| multiline=True, | |
| tooltip="The text prompt used to generate the video.", | |
| ), | |
| comfy_io.Image.Input( | |
| "images", | |
| tooltip="One to four images.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "resolution", | |
| options=["480p", "720p"], | |
| tooltip="The resolution of the output video.", | |
| ), | |
| comfy_io.Combo.Input( | |
| "aspect_ratio", | |
| options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"], | |
| tooltip="The aspect ratio of the output video.", | |
| ), | |
| comfy_io.Int.Input( | |
| "duration", | |
| default=5, | |
| min=3, | |
| max=12, | |
| step=1, | |
| tooltip="The duration of the output video in seconds.", | |
| display_mode=comfy_io.NumberDisplay.slider, | |
| ), | |
| comfy_io.Int.Input( | |
| "seed", | |
| default=0, | |
| min=0, | |
| max=2147483647, | |
| step=1, | |
| display_mode=comfy_io.NumberDisplay.number, | |
| control_after_generate=True, | |
| tooltip="Seed to use for generation.", | |
| optional=True, | |
| ), | |
| comfy_io.Boolean.Input( | |
| "watermark", | |
| default=True, | |
| tooltip="Whether to add an \"AI generated\" watermark to the video.", | |
| optional=True, | |
| ), | |
| ], | |
| outputs=[ | |
| comfy_io.Video.Output(), | |
| ], | |
| hidden=[ | |
| comfy_io.Hidden.auth_token_comfy_org, | |
| comfy_io.Hidden.api_key_comfy_org, | |
| comfy_io.Hidden.unique_id, | |
| ], | |
| is_api_node=True, | |
| ) | |
| async def execute( | |
| cls, | |
| model: str, | |
| prompt: str, | |
| images: torch.Tensor, | |
| resolution: str, | |
| aspect_ratio: str, | |
| duration: int, | |
| seed: int, | |
| watermark: bool, | |
| ) -> comfy_io.NodeOutput: | |
| validate_string(prompt, strip_whitespace=True, min_length=1) | |
| raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"]) | |
| for image in images: | |
| validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000) | |
| validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5 | |
| auth_kwargs = { | |
| "auth_token": cls.hidden.auth_token_comfy_org, | |
| "comfy_api_key": cls.hidden.api_key_comfy_org, | |
| } | |
| image_urls = await upload_images_to_comfyapi( | |
| images, max_images=4, mime_type="image/png", auth_kwargs=auth_kwargs | |
| ) | |
| prompt = ( | |
| f"{prompt} " | |
| f"--resolution {resolution} " | |
| f"--ratio {aspect_ratio} " | |
| f"--duration {duration} " | |
| f"--seed {seed} " | |
| f"--watermark {str(watermark).lower()}" | |
| ) | |
| x = [ | |
| TaskTextContent(text=prompt), | |
| *[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls] | |
| ] | |
| return await process_video_task( | |
| request_model=Image2VideoTaskCreationRequest, | |
| payload=Image2VideoTaskCreationRequest( | |
| model=model, | |
| content=x, | |
| ), | |
| auth_kwargs=auth_kwargs, | |
| node_id=cls.hidden.unique_id, | |
| estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))), | |
| ) | |
| async def process_video_task( | |
| request_model: Type[T], | |
| payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest], | |
| auth_kwargs: dict, | |
| node_id: str, | |
| estimated_duration: int | None, | |
| ) -> comfy_io.NodeOutput: | |
| initial_response = await SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path=BYTEPLUS_TASK_ENDPOINT, | |
| method=HttpMethod.POST, | |
| request_model=request_model, | |
| response_model=TaskCreationResponse, | |
| ), | |
| request=payload, | |
| auth_kwargs=auth_kwargs, | |
| ).execute() | |
| response = await poll_until_finished( | |
| auth_kwargs, | |
| initial_response.id, | |
| estimated_duration=estimated_duration, | |
| node_id=node_id, | |
| ) | |
| return comfy_io.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response))) | |
| def raise_if_text_params(prompt: str, text_params: list[str]) -> None: | |
| for i in text_params: | |
| if f"--{i} " in prompt: | |
| raise ValueError( | |
| f"--{i} is not allowed in the prompt, use the appropriated widget input to change this value." | |
| ) | |
| class ByteDanceExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]: | |
| return [ | |
| ByteDanceImageNode, | |
| ByteDanceImageEditNode, | |
| ByteDanceSeedreamNode, | |
| ByteDanceTextToVideoNode, | |
| ByteDanceImageToVideoNode, | |
| ByteDanceFirstLastFrameNode, | |
| ByteDanceImageReferenceNode, | |
| ] | |
| async def comfy_entrypoint() -> ByteDanceExtension: | |
| return ByteDanceExtension() | |