Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import aiohttp | |
| import io | |
| import logging | |
| import mimetypes | |
| from typing import Optional, Union | |
| from comfy.utils import common_upscale | |
| from comfy_api.input_impl import VideoFromFile | |
| from comfy_api.util import VideoContainer, VideoCodec | |
| from comfy_api.input.video_types import VideoInput | |
| from comfy_api.input.basic_types import AudioInput | |
| from comfy_api_nodes.apis.client import ( | |
| ApiClient, | |
| ApiEndpoint, | |
| HttpMethod, | |
| SynchronousOperation, | |
| UploadRequest, | |
| UploadResponse, | |
| ) | |
| from server import PromptServer | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import math | |
| import base64 | |
| import uuid | |
| from io import BytesIO | |
| import av | |
| async def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile: | |
| """Downloads a video from a URL and returns a `VIDEO` output. | |
| Args: | |
| video_url: The URL of the video to download. | |
| Returns: | |
| A Comfy node `VIDEO` output. | |
| """ | |
| video_io = await download_url_to_bytesio(video_url, timeout) | |
| if video_io is None: | |
| error_msg = f"Failed to download video from {video_url}" | |
| logging.error(error_msg) | |
| raise ValueError(error_msg) | |
| return VideoFromFile(video_io) | |
| def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor: | |
| """Downscale input image tensor to roughly the specified total pixels.""" | |
| samples = image.movedim(-1, 1) | |
| total = int(total_pixels) | |
| scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) | |
| if scale_by >= 1: | |
| return image | |
| width = round(samples.shape[3] * scale_by) | |
| height = round(samples.shape[2] * scale_by) | |
| s = common_upscale(samples, width, height, "lanczos", "disabled") | |
| s = s.movedim(1, -1) | |
| return s | |
| async def validate_and_cast_response( | |
| response, timeout: int = None, node_id: Union[str, None] = None | |
| ) -> torch.Tensor: | |
| """Validates and casts a response to a torch.Tensor. | |
| Args: | |
| response: The response to validate and cast. | |
| timeout: Request timeout in seconds. Defaults to None (no timeout). | |
| Returns: | |
| A torch.Tensor representing the image (1, H, W, C). | |
| Raises: | |
| ValueError: If the response is not valid. | |
| """ | |
| # validate raw JSON response | |
| data = response.data | |
| if not data or len(data) == 0: | |
| raise ValueError("No images returned from API endpoint") | |
| # Initialize list to store image tensors | |
| image_tensors: list[torch.Tensor] = [] | |
| # Process each image in the data array | |
| async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session: | |
| for img_data in data: | |
| img_bytes: bytes | |
| if img_data.b64_json: | |
| img_bytes = base64.b64decode(img_data.b64_json) | |
| elif img_data.url: | |
| if node_id: | |
| PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id) | |
| async with session.get(img_data.url) as resp: | |
| if resp.status != 200: | |
| raise ValueError("Failed to download generated image") | |
| img_bytes = await resp.read() | |
| else: | |
| raise ValueError("Invalid image payload – neither URL nor base64 data present.") | |
| pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA") | |
| arr = np.asarray(pil_img).astype(np.float32) / 255.0 | |
| image_tensors.append(torch.from_numpy(arr)) | |
| return torch.stack(image_tensors, dim=0) | |
| def validate_aspect_ratio( | |
| aspect_ratio: str, | |
| minimum_ratio: float, | |
| maximum_ratio: float, | |
| minimum_ratio_str: str, | |
| maximum_ratio_str: str, | |
| ) -> float: | |
| """Validates and casts an aspect ratio string to a float. | |
| Args: | |
| aspect_ratio: The aspect ratio string to validate. | |
| minimum_ratio: The minimum aspect ratio. | |
| maximum_ratio: The maximum aspect ratio. | |
| minimum_ratio_str: The minimum aspect ratio string. | |
| maximum_ratio_str: The maximum aspect ratio string. | |
| Returns: | |
| The validated and cast aspect ratio. | |
| Raises: | |
| Exception: If the aspect ratio is not valid. | |
| """ | |
| # get ratio values | |
| numbers = aspect_ratio.split(":") | |
| if len(numbers) != 2: | |
| raise TypeError( | |
| f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}." | |
| ) | |
| try: | |
| numerator = int(numbers[0]) | |
| denominator = int(numbers[1]) | |
| except ValueError as exc: | |
| raise TypeError( | |
| f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}." | |
| ) from exc | |
| calculated_ratio = numerator / denominator | |
| # if not close to minimum and maximum, check bounds | |
| if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose( | |
| calculated_ratio, maximum_ratio | |
| ): | |
| if calculated_ratio < minimum_ratio: | |
| raise TypeError( | |
| f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})." | |
| ) | |
| elif calculated_ratio > maximum_ratio: | |
| raise TypeError( | |
| f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})." | |
| ) | |
| return aspect_ratio | |
| def mimetype_to_extension(mime_type: str) -> str: | |
| """Converts a MIME type to a file extension.""" | |
| return mime_type.split("/")[-1].lower() | |
| async def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO: | |
| """Downloads content from a URL using requests and returns it as BytesIO. | |
| Args: | |
| url: The URL to download. | |
| timeout: Request timeout in seconds. Defaults to None (no timeout). | |
| Returns: | |
| BytesIO object containing the downloaded content. | |
| """ | |
| timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None | |
| async with aiohttp.ClientSession(timeout=timeout_cfg) as session: | |
| async with session.get(url) as resp: | |
| resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX) | |
| return BytesIO(await resp.read()) | |
| def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor: | |
| """Converts image data from BytesIO to a torch.Tensor. | |
| Args: | |
| image_bytesio: BytesIO object containing the image data. | |
| mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA"). | |
| Returns: | |
| A torch.Tensor representing the image (1, H, W, C). | |
| Raises: | |
| PIL.UnidentifiedImageError: If the image data cannot be identified. | |
| ValueError: If the specified mode is invalid. | |
| """ | |
| image = Image.open(image_bytesio) | |
| image = image.convert(mode) | |
| image_array = np.array(image).astype(np.float32) / 255.0 | |
| return torch.from_numpy(image_array).unsqueeze(0) | |
| async def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor: | |
| """Downloads an image from a URL and returns a [B, H, W, C] tensor.""" | |
| image_bytesio = await download_url_to_bytesio(url, timeout) | |
| return bytesio_to_image_tensor(image_bytesio) | |
| def process_image_response(response_content: bytes | str) -> torch.Tensor: | |
| """Uses content from a Response object and converts it to a torch.Tensor""" | |
| return bytesio_to_image_tensor(BytesIO(response_content)) | |
| def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image: | |
| """Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling.""" | |
| if len(image.shape) > 3: | |
| image = image[0] | |
| # TODO: remove alpha if not allowed and present | |
| input_tensor = image.cpu() | |
| input_tensor = downscale_image_tensor( | |
| input_tensor.unsqueeze(0), total_pixels=total_pixels | |
| ).squeeze() | |
| image_np = (input_tensor.numpy() * 255).astype(np.uint8) | |
| img = Image.fromarray(image_np) | |
| return img | |
| def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO: | |
| """Converts a PIL Image to a BytesIO object.""" | |
| if not mime_type: | |
| mime_type = "image/png" | |
| img_byte_arr = io.BytesIO() | |
| # Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG') | |
| pil_format = mime_type.split("/")[-1].upper() | |
| if pil_format == "JPG": | |
| pil_format = "JPEG" | |
| img.save(img_byte_arr, format=pil_format) | |
| img_byte_arr.seek(0) | |
| return img_byte_arr | |
| def tensor_to_bytesio( | |
| image: torch.Tensor, | |
| name: Optional[str] = None, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> BytesIO: | |
| """Converts a torch.Tensor image to a named BytesIO object. | |
| Args: | |
| image: Input torch.Tensor image. | |
| name: Optional filename for the BytesIO object. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). | |
| Returns: | |
| Named BytesIO object containing the image data. | |
| """ | |
| if not mime_type: | |
| mime_type = "image/png" | |
| pil_image = _tensor_to_pil(image, total_pixels=total_pixels) | |
| img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type) | |
| img_binary.name = ( | |
| f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}" | |
| ) | |
| return img_binary | |
| def tensor_to_base64_string( | |
| image_tensor: torch.Tensor, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> str: | |
| """Convert [B, H, W, C] or [H, W, C] tensor to a base64 string. | |
| Args: | |
| image_tensor: Input torch.Tensor image. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4'). | |
| Returns: | |
| Base64 encoded string of the image. | |
| """ | |
| pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels) | |
| img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type) | |
| img_bytes = img_byte_arr.getvalue() | |
| # Encode bytes to base64 string | |
| base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8") | |
| return base64_encoded_string | |
| def tensor_to_data_uri( | |
| image_tensor: torch.Tensor, | |
| total_pixels: int = 2048 * 2048, | |
| mime_type: str = "image/png", | |
| ) -> str: | |
| """Converts a tensor image to a Data URI string. | |
| Args: | |
| image_tensor: Input torch.Tensor image. | |
| total_pixels: Maximum total pixels for potential downscaling. | |
| mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp'). | |
| Returns: | |
| Data URI string (e.g., 'data:image/png;base64,...'). | |
| """ | |
| base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type) | |
| return f"data:{mime_type};base64,{base64_string}" | |
| def text_filepath_to_base64_string(filepath: str) -> str: | |
| """Converts a text file to a base64 string.""" | |
| with open(filepath, "rb") as f: | |
| file_content = f.read() | |
| return base64.b64encode(file_content).decode("utf-8") | |
| def text_filepath_to_data_uri(filepath: str) -> str: | |
| """Converts a text file to a data URI.""" | |
| base64_string = text_filepath_to_base64_string(filepath) | |
| mime_type, _ = mimetypes.guess_type(filepath) | |
| if mime_type is None: | |
| mime_type = "application/octet-stream" | |
| return f"data:{mime_type};base64,{base64_string}" | |
| async def upload_file_to_comfyapi( | |
| file_bytes_io: BytesIO, | |
| filename: str, | |
| upload_mime_type: Optional[str], | |
| auth_kwargs: Optional[dict[str, str]] = None, | |
| ) -> str: | |
| """ | |
| Uploads a single file to ComfyUI API and returns its download URL. | |
| Args: | |
| file_bytes_io: BytesIO object containing the file data. | |
| filename: The filename of the file. | |
| upload_mime_type: MIME type of the file. | |
| auth_kwargs: Optional authentication token(s). | |
| Returns: | |
| The download URL for the uploaded file. | |
| """ | |
| if upload_mime_type is None: | |
| request_object = UploadRequest(file_name=filename) | |
| else: | |
| request_object = UploadRequest(file_name=filename, content_type=upload_mime_type) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/customers/storage", | |
| method=HttpMethod.POST, | |
| request_model=UploadRequest, | |
| response_model=UploadResponse, | |
| ), | |
| request=request_object, | |
| auth_kwargs=auth_kwargs, | |
| ) | |
| response: UploadResponse = await operation.execute() | |
| await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type) | |
| return response.download_url | |
| def video_to_base64_string( | |
| video: VideoInput, | |
| container_format: VideoContainer = None, | |
| codec: VideoCodec = None | |
| ) -> str: | |
| """ | |
| Converts a video input to a base64 string. | |
| Args: | |
| video: The video input to convert | |
| container_format: Optional container format to use (defaults to video.container if available) | |
| codec: Optional codec to use (defaults to video.codec if available) | |
| """ | |
| video_bytes_io = io.BytesIO() | |
| # Use provided format/codec if specified, otherwise use video's own if available | |
| format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4) | |
| codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264) | |
| video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use) | |
| video_bytes_io.seek(0) | |
| return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8") | |
| async def upload_video_to_comfyapi( | |
| video: VideoInput, | |
| auth_kwargs: Optional[dict[str, str]] = None, | |
| container: VideoContainer = VideoContainer.MP4, | |
| codec: VideoCodec = VideoCodec.H264, | |
| max_duration: Optional[int] = None, | |
| ) -> str: | |
| """ | |
| Uploads a single video to ComfyUI API and returns its download URL. | |
| Uses the specified container and codec for saving the video before upload. | |
| Args: | |
| video: VideoInput object (Comfy VIDEO type). | |
| auth_kwargs: Optional authentication token(s). | |
| container: The video container format to use (default: MP4). | |
| codec: The video codec to use (default: H264). | |
| max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised. | |
| Returns: | |
| The download URL for the uploaded video file. | |
| """ | |
| if max_duration is not None: | |
| try: | |
| actual_duration = video.duration_seconds | |
| if actual_duration is not None and actual_duration > max_duration: | |
| raise ValueError( | |
| f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)." | |
| ) | |
| except Exception as e: | |
| logging.error(f"Error getting video duration: {e}") | |
| raise ValueError(f"Could not verify video duration from source: {e}") from e | |
| upload_mime_type = f"video/{container.value.lower()}" | |
| filename = f"uploaded_video.{container.value.lower()}" | |
| # Convert VideoInput to BytesIO using specified container/codec | |
| video_bytes_io = io.BytesIO() | |
| video.save_to(video_bytes_io, format=container, codec=codec) | |
| video_bytes_io.seek(0) | |
| return await upload_file_to_comfyapi(video_bytes_io, filename, upload_mime_type, auth_kwargs) | |
| def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray: | |
| """ | |
| Prepares audio waveform for av library by converting to a contiguous numpy array. | |
| Args: | |
| waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type. | |
| Returns: | |
| Contiguous numpy array of the audio waveform. If the audio was batched, | |
| the first item is taken. | |
| """ | |
| if waveform.ndim != 3 or waveform.shape[0] != 1: | |
| raise ValueError("Expected waveform tensor shape (1, channels, samples)") | |
| # If batch is > 1, take first item | |
| if waveform.shape[0] > 1: | |
| waveform = waveform[0] | |
| # Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array | |
| audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy() | |
| if audio_data_np.dtype != np.float32: | |
| audio_data_np = audio_data_np.astype(np.float32) | |
| return audio_data_np | |
| def audio_ndarray_to_bytesio( | |
| audio_data_np: np.ndarray, | |
| sample_rate: int, | |
| container_format: str = "mp4", | |
| codec_name: str = "aac", | |
| ) -> BytesIO: | |
| """ | |
| Encodes a numpy array of audio data into a BytesIO object. | |
| """ | |
| audio_bytes_io = io.BytesIO() | |
| with av.open(audio_bytes_io, mode="w", format=container_format) as output_container: | |
| audio_stream = output_container.add_stream(codec_name, rate=sample_rate) | |
| frame = av.AudioFrame.from_ndarray( | |
| audio_data_np, | |
| format="fltp", | |
| layout="stereo" if audio_data_np.shape[0] > 1 else "mono", | |
| ) | |
| frame.sample_rate = sample_rate | |
| frame.pts = 0 | |
| for packet in audio_stream.encode(frame): | |
| output_container.mux(packet) | |
| # Flush stream | |
| for packet in audio_stream.encode(None): | |
| output_container.mux(packet) | |
| audio_bytes_io.seek(0) | |
| return audio_bytes_io | |
| async def upload_audio_to_comfyapi( | |
| audio: AudioInput, | |
| auth_kwargs: Optional[dict[str, str]] = None, | |
| container_format: str = "mp4", | |
| codec_name: str = "aac", | |
| mime_type: str = "audio/mp4", | |
| filename: str = "uploaded_audio.mp4", | |
| ) -> str: | |
| """ | |
| Uploads a single audio input to ComfyUI API and returns its download URL. | |
| Encodes the raw waveform into the specified format before uploading. | |
| Args: | |
| audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate) | |
| auth_kwargs: Optional authentication token(s). | |
| Returns: | |
| The download URL for the uploaded audio file. | |
| """ | |
| sample_rate: int = audio["sample_rate"] | |
| waveform: torch.Tensor = audio["waveform"] | |
| audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) | |
| audio_bytes_io = audio_ndarray_to_bytesio( | |
| audio_data_np, sample_rate, container_format, codec_name | |
| ) | |
| return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs) | |
| def f32_pcm(wav: torch.Tensor) -> torch.Tensor: | |
| """Convert audio to float 32 bits PCM format. Copy-paste from nodes_audio.py file.""" | |
| if wav.dtype.is_floating_point: | |
| return wav | |
| elif wav.dtype == torch.int16: | |
| return wav.float() / (2 ** 15) | |
| elif wav.dtype == torch.int32: | |
| return wav.float() / (2 ** 31) | |
| raise ValueError(f"Unsupported wav dtype: {wav.dtype}") | |
| def audio_bytes_to_audio_input(audio_bytes: bytes,) -> dict: | |
| """ | |
| Decode any common audio container from bytes using PyAV and return | |
| a Comfy AUDIO dict: {"waveform": [1, C, T] float32, "sample_rate": int}. | |
| """ | |
| with av.open(io.BytesIO(audio_bytes)) as af: | |
| if not af.streams.audio: | |
| raise ValueError("No audio stream found in response.") | |
| stream = af.streams.audio[0] | |
| in_sr = int(stream.codec_context.sample_rate) | |
| out_sr = in_sr | |
| frames: list[torch.Tensor] = [] | |
| n_channels = stream.channels or 1 | |
| for frame in af.decode(streams=stream.index): | |
| arr = frame.to_ndarray() # shape can be [C, T] or [T, C] or [T] | |
| buf = torch.from_numpy(arr) | |
| if buf.ndim == 1: | |
| buf = buf.unsqueeze(0) # [T] -> [1, T] | |
| elif buf.shape[0] != n_channels and buf.shape[-1] == n_channels: | |
| buf = buf.transpose(0, 1).contiguous() # [T, C] -> [C, T] | |
| elif buf.shape[0] != n_channels: | |
| buf = buf.reshape(-1, n_channels).t().contiguous() # fallback to [C, T] | |
| frames.append(buf) | |
| if not frames: | |
| raise ValueError("Decoded zero audio frames.") | |
| wav = torch.cat(frames, dim=1) # [C, T] | |
| wav = f32_pcm(wav) | |
| return {"waveform": wav.unsqueeze(0).contiguous(), "sample_rate": out_sr} | |
| def audio_input_to_mp3(audio: AudioInput) -> io.BytesIO: | |
| waveform = audio["waveform"].cpu() | |
| output_buffer = io.BytesIO() | |
| output_container = av.open(output_buffer, mode='w', format="mp3") | |
| out_stream = output_container.add_stream("libmp3lame", rate=audio["sample_rate"]) | |
| out_stream.bit_rate = 320000 | |
| frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout='mono' if waveform.shape[0] == 1 else 'stereo') | |
| frame.sample_rate = audio["sample_rate"] | |
| frame.pts = 0 | |
| output_container.mux(out_stream.encode(frame)) | |
| output_container.mux(out_stream.encode(None)) | |
| output_container.close() | |
| output_buffer.seek(0) | |
| return output_buffer | |
| def audio_to_base64_string( | |
| audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac" | |
| ) -> str: | |
| """Converts an audio input to a base64 string.""" | |
| sample_rate: int = audio["sample_rate"] | |
| waveform: torch.Tensor = audio["waveform"] | |
| audio_data_np = audio_tensor_to_contiguous_ndarray(waveform) | |
| audio_bytes_io = audio_ndarray_to_bytesio( | |
| audio_data_np, sample_rate, container_format, codec_name | |
| ) | |
| audio_bytes = audio_bytes_io.getvalue() | |
| return base64.b64encode(audio_bytes).decode("utf-8") | |
| async def upload_images_to_comfyapi( | |
| image: torch.Tensor, | |
| max_images=8, | |
| auth_kwargs: Optional[dict[str, str]] = None, | |
| mime_type: Optional[str] = None, | |
| ) -> list[str]: | |
| """ | |
| Uploads images to ComfyUI API and returns download URLs. | |
| To upload multiple images, stack them in the batch dimension first. | |
| Args: | |
| image: Input torch.Tensor image. | |
| max_images: Maximum number of images to upload. | |
| auth_kwargs: Optional authentication token(s). | |
| mime_type: Optional MIME type for the image. | |
| """ | |
| # if batch, try to upload each file if max_images is greater than 0 | |
| download_urls: list[str] = [] | |
| is_batch = len(image.shape) > 3 | |
| batch_len = image.shape[0] if is_batch else 1 | |
| for idx in range(min(batch_len, max_images)): | |
| tensor = image[idx] if is_batch else image | |
| img_io = tensor_to_bytesio(tensor, mime_type=mime_type) | |
| url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs) | |
| download_urls.append(url) | |
| return download_urls | |
| def resize_mask_to_image( | |
| mask: torch.Tensor, | |
| image: torch.Tensor, | |
| upscale_method="nearest-exact", | |
| crop="disabled", | |
| allow_gradient=True, | |
| add_channel_dim=False, | |
| ): | |
| """ | |
| Resize mask to be the same dimensions as an image, while maintaining proper format for API calls. | |
| """ | |
| _, H, W, _ = image.shape | |
| mask = mask.unsqueeze(-1) | |
| mask = mask.movedim(-1, 1) | |
| mask = common_upscale( | |
| mask, width=W, height=H, upscale_method=upscale_method, crop=crop | |
| ) | |
| mask = mask.movedim(1, -1) | |
| if not add_channel_dim: | |
| mask = mask.squeeze(-1) | |
| if not allow_gradient: | |
| mask = (mask > 0.5).float() | |
| return mask | |
| def validate_string( | |
| string: str, | |
| strip_whitespace=True, | |
| field_name="prompt", | |
| min_length=None, | |
| max_length=None, | |
| ): | |
| if string is None: | |
| raise Exception(f"Field '{field_name}' cannot be empty.") | |
| if strip_whitespace: | |
| string = string.strip() | |
| if min_length and len(string) < min_length: | |
| raise Exception( | |
| f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long." | |
| ) | |
| if max_length and len(string) > max_length: | |
| raise Exception( | |
| f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long." | |
| ) | |
| def image_tensor_pair_to_batch( | |
| image1: torch.Tensor, image2: torch.Tensor | |
| ) -> torch.Tensor: | |
| """ | |
| Converts a pair of image tensors to a batch tensor. | |
| If the images are not the same size, the smaller image is resized to | |
| match the larger image. | |
| """ | |
| if image1.shape[1:] != image2.shape[1:]: | |
| image2 = common_upscale( | |
| image2.movedim(-1, 1), | |
| image1.shape[2], | |
| image1.shape[1], | |
| "bilinear", | |
| "center", | |
| ).movedim(1, -1) | |
| return torch.cat((image1, image2), dim=0) | |