Spaces:
Running
on
Zero
Running
on
Zero
| # Based on: | |
| # https://github.com/PixArt-alpha/PixArt-alpha [Apache 2.0 license] | |
| # https://github.com/PixArt-alpha/PixArt-sigma [Apache 2.0 license] | |
| import torch | |
| import torch.nn as nn | |
| from .blocks import ( | |
| t2i_modulate, | |
| CaptionEmbedder, | |
| AttentionKVCompress, | |
| MultiHeadCrossAttention, | |
| T2IFinalLayer, | |
| SizeEmbedder, | |
| ) | |
| from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, PatchEmbed, Mlp, get_1d_sincos_pos_embed_from_grid_torch | |
| def get_2d_sincos_pos_embed_torch(embed_dim, w, h, pe_interpolation=1.0, base_size=16, device=None, dtype=torch.float32): | |
| grid_h, grid_w = torch.meshgrid( | |
| torch.arange(h, device=device, dtype=dtype) / (h/base_size) / pe_interpolation, | |
| torch.arange(w, device=device, dtype=dtype) / (w/base_size) / pe_interpolation, | |
| indexing='ij' | |
| ) | |
| emb_h = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_h, device=device, dtype=dtype) | |
| emb_w = get_1d_sincos_pos_embed_from_grid_torch(embed_dim // 2, grid_w, device=device, dtype=dtype) | |
| emb = torch.cat([emb_w, emb_h], dim=1) # (H*W, D) | |
| return emb | |
| class PixArtMSBlock(nn.Module): | |
| """ | |
| A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
| """ | |
| def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, | |
| sampling=None, sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **block_kwargs): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
| self.attn = AttentionKVCompress( | |
| hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, | |
| qk_norm=qk_norm, dtype=dtype, device=device, operations=operations, **block_kwargs | |
| ) | |
| self.cross_attn = MultiHeadCrossAttention( | |
| hidden_size, num_heads, dtype=dtype, device=device, operations=operations, **block_kwargs | |
| ) | |
| self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
| # to be compatible with lower version pytorch | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.mlp = Mlp( | |
| in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, | |
| dtype=dtype, device=device, operations=operations | |
| ) | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) | |
| def forward(self, x, y, t, mask=None, HW=None, **kwargs): | |
| B, N, C = x.shape | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t.reshape(B, 6, -1)).chunk(6, dim=1) | |
| x = x + (gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) | |
| x = x + self.cross_attn(x, y, mask) | |
| x = x + (gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) | |
| return x | |
| ### Core PixArt Model ### | |
| class PixArtMS(nn.Module): | |
| """ | |
| Diffusion model with a Transformer backbone. | |
| """ | |
| def __init__( | |
| self, | |
| input_size=32, | |
| patch_size=2, | |
| in_channels=4, | |
| hidden_size=1152, | |
| depth=28, | |
| num_heads=16, | |
| mlp_ratio=4.0, | |
| class_dropout_prob=0.1, | |
| learn_sigma=True, | |
| pred_sigma=True, | |
| drop_path: float = 0., | |
| caption_channels=4096, | |
| pe_interpolation=None, | |
| pe_precision=None, | |
| config=None, | |
| model_max_length=120, | |
| micro_condition=True, | |
| qk_norm=False, | |
| kv_compress_config=None, | |
| dtype=None, | |
| device=None, | |
| operations=None, | |
| **kwargs, | |
| ): | |
| nn.Module.__init__(self) | |
| self.dtype = dtype | |
| self.pred_sigma = pred_sigma | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels * 2 if pred_sigma else in_channels | |
| self.patch_size = patch_size | |
| self.num_heads = num_heads | |
| self.pe_interpolation = pe_interpolation | |
| self.pe_precision = pe_precision | |
| self.hidden_size = hidden_size | |
| self.depth = depth | |
| approx_gelu = lambda: nn.GELU(approximate="tanh") | |
| self.t_block = nn.Sequential( | |
| nn.SiLU(), | |
| operations.Linear(hidden_size, 6 * hidden_size, bias=True, dtype=dtype, device=device) | |
| ) | |
| self.x_embedder = PatchEmbed( | |
| patch_size=patch_size, | |
| in_chans=in_channels, | |
| embed_dim=hidden_size, | |
| bias=True, | |
| dtype=dtype, | |
| device=device, | |
| operations=operations | |
| ) | |
| self.t_embedder = TimestepEmbedder( | |
| hidden_size, dtype=dtype, device=device, operations=operations, | |
| ) | |
| self.y_embedder = CaptionEmbedder( | |
| in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, | |
| act_layer=approx_gelu, token_num=model_max_length, | |
| dtype=dtype, device=device, operations=operations, | |
| ) | |
| self.micro_conditioning = micro_condition | |
| if self.micro_conditioning: | |
| self.csize_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) | |
| self.ar_embedder = SizeEmbedder(hidden_size//3, dtype=dtype, device=device, operations=operations) | |
| # For fixed sin-cos embedding: | |
| # num_patches = (input_size // patch_size) * (input_size // patch_size) | |
| # self.base_size = input_size // self.patch_size | |
| # self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size)) | |
| drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule | |
| if kv_compress_config is None: | |
| kv_compress_config = { | |
| 'sampling': None, | |
| 'scale_factor': 1, | |
| 'kv_compress_layer': [], | |
| } | |
| self.blocks = nn.ModuleList([ | |
| PixArtMSBlock( | |
| hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], | |
| sampling=kv_compress_config['sampling'], | |
| sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, | |
| qk_norm=qk_norm, | |
| dtype=dtype, | |
| device=device, | |
| operations=operations, | |
| ) | |
| for i in range(depth) | |
| ]) | |
| self.final_layer = T2IFinalLayer( | |
| hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations | |
| ) | |
| def forward_orig(self, x, timestep, y, mask=None, c_size=None, c_ar=None, **kwargs): | |
| """ | |
| Original forward pass of PixArt. | |
| x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
| t: (N,) tensor of diffusion timesteps | |
| y: (N, 1, 120, C) conditioning | |
| ar: (N, 1): aspect ratio | |
| cs: (N ,2) size conditioning for height/width | |
| """ | |
| B, C, H, W = x.shape | |
| c_res = (H + W) // 2 | |
| pe_interpolation = self.pe_interpolation | |
| if pe_interpolation is None or self.pe_precision is not None: | |
| # calculate pe_interpolation on-the-fly | |
| pe_interpolation = round(c_res / (512/8.0), self.pe_precision or 0) | |
| pos_embed = get_2d_sincos_pos_embed_torch( | |
| self.hidden_size, | |
| h=(H // self.patch_size), | |
| w=(W // self.patch_size), | |
| pe_interpolation=pe_interpolation, | |
| base_size=((round(c_res / 64) * 64) // self.patch_size), | |
| device=x.device, | |
| dtype=x.dtype, | |
| ).unsqueeze(0) | |
| x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
| t = self.t_embedder(timestep, x.dtype) # (N, D) | |
| if self.micro_conditioning and (c_size is not None and c_ar is not None): | |
| bs = x.shape[0] | |
| c_size = self.csize_embedder(c_size, bs) # (N, D) | |
| c_ar = self.ar_embedder(c_ar, bs) # (N, D) | |
| t = t + torch.cat([c_size, c_ar], dim=1) | |
| t0 = self.t_block(t) | |
| y = self.y_embedder(y, self.training) # (N, D) | |
| if mask is not None: | |
| if mask.shape[0] != y.shape[0]: | |
| mask = mask.repeat(y.shape[0] // mask.shape[0], 1) | |
| mask = mask.squeeze(1).squeeze(1) | |
| y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) | |
| y_lens = mask.sum(dim=1).tolist() | |
| else: | |
| y_lens = None | |
| y = y.squeeze(1).view(1, -1, x.shape[-1]) | |
| for block in self.blocks: | |
| x = block(x, y, t0, y_lens, (H, W), **kwargs) # (N, T, D) | |
| x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
| x = self.unpatchify(x, H, W) # (N, out_channels, H, W) | |
| return x | |
| def forward(self, x, timesteps, context, c_size=None, c_ar=None, **kwargs): | |
| B, C, H, W = x.shape | |
| # Fallback for missing microconds | |
| if self.micro_conditioning: | |
| if c_size is None: | |
| c_size = torch.tensor([H*8, W*8], dtype=x.dtype, device=x.device).repeat(B, 1) | |
| if c_ar is None: | |
| c_ar = torch.tensor([H/W], dtype=x.dtype, device=x.device).repeat(B, 1) | |
| ## Still accepts the input w/o that dim but returns garbage | |
| if len(context.shape) == 3: | |
| context = context.unsqueeze(1) | |
| ## run original forward pass | |
| out = self.forward_orig(x, timesteps, context, c_size=c_size, c_ar=c_ar) | |
| ## only return EPS | |
| if self.pred_sigma: | |
| return out[:, :self.in_channels] | |
| return out | |
| def unpatchify(self, x, h, w): | |
| """ | |
| x: (N, T, patch_size**2 * C) | |
| imgs: (N, H, W, C) | |
| """ | |
| c = self.out_channels | |
| p = self.x_embedder.patch_size[0] | |
| h = h // self.patch_size | |
| w = w // self.patch_size | |
| assert h * w == x.shape[1] | |
| x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
| x = torch.einsum('nhwpqc->nchpwq', x) | |
| imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
| return imgs | |