Spaces:
Paused
Paused
Upload 8 files
Browse fileswith index code
- .gitattributes +0 -1
- Dockerfile +1 -1
- Index.py +237 -0
- extractor.py +94 -0
- main.py +72 -47
- requirements.txt +7 -1
.gitattributes
CHANGED
|
@@ -25,7 +25,6 @@
|
|
| 25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
CHANGED
|
@@ -24,4 +24,4 @@ WORKDIR $HOME/app
|
|
| 24 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 25 |
COPY --chown=user . $HOME/app
|
| 26 |
|
| 27 |
-
CMD ["uvicorn", "
|
|
|
|
| 24 |
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 25 |
COPY --chown=user . $HOME/app
|
| 26 |
|
| 27 |
+
CMD ["uvicorn", "Index:app", "--host", "0.0.0.0", "--port", "7860"]
|
Index.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
|
| 3 |
+
# from transformers import pipeline
|
| 4 |
+
from txtai.embeddings import Embeddings
|
| 5 |
+
from txtai.pipeline import Extractor
|
| 6 |
+
from langchain.document_loaders import WebBaseLoader
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
|
| 9 |
+
from langchain import HuggingFaceHub
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain.chains import LLMChain
|
| 12 |
+
from txtai.embeddings import Embeddings
|
| 13 |
+
from txtai.pipeline import Extractor
|
| 14 |
+
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import sqlite3
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 20 |
+
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 21 |
+
app = FastAPI(docs_url="/")
|
| 22 |
+
# app = FastAPI()
|
| 23 |
+
|
| 24 |
+
# pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# @app.get("/generate")
|
| 28 |
+
# def generate(text: str):
|
| 29 |
+
# """
|
| 30 |
+
# Using the text2text-generation pipeline from `transformers`, generate text
|
| 31 |
+
# from the given input text. The model used is `google/flan-t5-small`, which
|
| 32 |
+
# can be found [here](https://huggingface.co/google/flan-t5-small).
|
| 33 |
+
# """
|
| 34 |
+
# output = pipe(text)
|
| 35 |
+
# return {"output": output[0]["generated_text"]}
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_embeddings(
|
| 39 |
+
domain: str = "",
|
| 40 |
+
db_present: bool = True,
|
| 41 |
+
path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
| 42 |
+
index_name: str = "index",
|
| 43 |
+
):
|
| 44 |
+
# Create embeddings model with content support
|
| 45 |
+
embeddings = Embeddings({"path": path, "content": True})
|
| 46 |
+
|
| 47 |
+
# if Vector DB is not present
|
| 48 |
+
if not db_present:
|
| 49 |
+
return embeddings
|
| 50 |
+
else:
|
| 51 |
+
if domain == "":
|
| 52 |
+
embeddings.load(index_name) # change this later
|
| 53 |
+
else:
|
| 54 |
+
print(3)
|
| 55 |
+
embeddings.load(f"{index_name}/{domain}")
|
| 56 |
+
return embeddings
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def _check_if_db_exists(db_path: str) -> bool:
|
| 60 |
+
return os.path.exists(db_path)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _text_splitter(doc):
|
| 64 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 65 |
+
chunk_size=500,
|
| 66 |
+
chunk_overlap=50,
|
| 67 |
+
length_function=len,
|
| 68 |
+
)
|
| 69 |
+
return text_splitter.transform_documents(doc)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def _load_docs(path: str):
|
| 73 |
+
load_doc = WebBaseLoader(path).load()
|
| 74 |
+
doc = _text_splitter(load_doc)
|
| 75 |
+
return doc
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _stream(dataset, limit, index: int = 0):
|
| 79 |
+
for row in dataset:
|
| 80 |
+
yield (index, row.page_content, None)
|
| 81 |
+
index += 1
|
| 82 |
+
|
| 83 |
+
if index >= limit:
|
| 84 |
+
break
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _max_index_id(path):
|
| 88 |
+
db = sqlite3.connect(path)
|
| 89 |
+
|
| 90 |
+
table = "sections"
|
| 91 |
+
df = pd.read_sql_query(f"select * from {table}", db)
|
| 92 |
+
return {"max_index": df["indexid"].max()}
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
|
| 96 |
+
print(vector_doc_path)
|
| 97 |
+
if db_present:
|
| 98 |
+
print(1)
|
| 99 |
+
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
| 100 |
+
print(max_index)
|
| 101 |
+
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
|
| 102 |
+
print("Embeddings done!!")
|
| 103 |
+
embeddings.save(vector_doc_path)
|
| 104 |
+
print("Embeddings done - 1!!")
|
| 105 |
+
else:
|
| 106 |
+
print(2)
|
| 107 |
+
embeddings.index(_stream(doc, 500, 0))
|
| 108 |
+
embeddings.save(vector_doc_path)
|
| 109 |
+
max_index = _max_index_id(f"{vector_doc_path}/documents")
|
| 110 |
+
print(max_index)
|
| 111 |
+
# check
|
| 112 |
+
# max_index = _max_index_id(f"{vector_doc_path}/documents")
|
| 113 |
+
# print(max_index)
|
| 114 |
+
return max_index
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# def prompt(question):
|
| 118 |
+
# return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 119 |
+
# Question: {question}
|
| 120 |
+
# Context: """
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# def search(query, question=None):
|
| 124 |
+
# # Default question to query if empty
|
| 125 |
+
# if not question:
|
| 126 |
+
# question = query
|
| 127 |
+
|
| 128 |
+
# return extractor([("answer", query, prompt(question), False)])[0][1]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# @app.get("/rag")
|
| 132 |
+
# def rag(question: str):
|
| 133 |
+
# # question = "what is the document about?"
|
| 134 |
+
# answer = search(question)
|
| 135 |
+
# # print(question, answer)
|
| 136 |
+
# return {answer}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# @app.get("/index")
|
| 140 |
+
# def get_url_file_path(url_path: str):
|
| 141 |
+
# embeddings = load_embeddings()
|
| 142 |
+
# doc = _load_docs(url_path)
|
| 143 |
+
# embeddings, max_index = _upsert_docs(doc, embeddings)
|
| 144 |
+
# return max_index
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
@app.get("/index/{domain}/")
|
| 148 |
+
def get_domain_file_path(domain: str, file_path: str):
|
| 149 |
+
print(domain, file_path)
|
| 150 |
+
print(os.getcwd())
|
| 151 |
+
bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
| 152 |
+
print(bool_value)
|
| 153 |
+
if bool_value:
|
| 154 |
+
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
| 155 |
+
print(embeddings)
|
| 156 |
+
doc = _load_docs(file_path)
|
| 157 |
+
max_index = _upsert_docs(
|
| 158 |
+
doc=doc,
|
| 159 |
+
embeddings=embeddings,
|
| 160 |
+
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
| 161 |
+
db_present=bool_value,
|
| 162 |
+
)
|
| 163 |
+
# print("-------")
|
| 164 |
+
else:
|
| 165 |
+
embeddings = load_embeddings(domain=domain, db_present=bool_value)
|
| 166 |
+
doc = _load_docs(file_path)
|
| 167 |
+
max_index = _upsert_docs(
|
| 168 |
+
doc=doc,
|
| 169 |
+
embeddings=embeddings,
|
| 170 |
+
vector_doc_path=f"{os.getcwd()}/index/{domain}",
|
| 171 |
+
db_present=bool_value,
|
| 172 |
+
)
|
| 173 |
+
# print("Final - output : ", max_index)
|
| 174 |
+
return "Executed Successfully!!"
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def _check_if_db_exists(db_path: str) -> bool:
|
| 178 |
+
return os.path.exists(db_path)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def _load_embeddings_from_db(
|
| 182 |
+
db_present: bool,
|
| 183 |
+
domain: str,
|
| 184 |
+
path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
| 185 |
+
):
|
| 186 |
+
# Create embeddings model with content support
|
| 187 |
+
embeddings = Embeddings({"path": path, "content": True})
|
| 188 |
+
# if Vector DB is not present
|
| 189 |
+
if not db_present:
|
| 190 |
+
return embeddings
|
| 191 |
+
else:
|
| 192 |
+
if domain == "":
|
| 193 |
+
embeddings.load("index") # change this later
|
| 194 |
+
else:
|
| 195 |
+
print(3)
|
| 196 |
+
embeddings.load(f"{os.getcwd()}/index/{domain}")
|
| 197 |
+
return embeddings
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def _prompt(question):
|
| 201 |
+
return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 202 |
+
Question: {question}
|
| 203 |
+
Context: """
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def _search(query, extractor, question=None):
|
| 207 |
+
# Default question to query if empty
|
| 208 |
+
if not question:
|
| 209 |
+
question = query
|
| 210 |
+
|
| 211 |
+
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 212 |
+
# Question: {question}
|
| 213 |
+
# Context: """
|
| 214 |
+
|
| 215 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
| 216 |
+
# llm_chain = LLMChain(prompt=prompt, llm=extractor)
|
| 217 |
+
|
| 218 |
+
# return {"question": question, "answer": llm_chain.run(question)}
|
| 219 |
+
return extractor([("answer", query, _prompt(question), False)])[0][1]
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
@app.get("/rag")
|
| 223 |
+
def rag(domain: str, question: str):
|
| 224 |
+
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
|
| 225 |
+
print(db_exists)
|
| 226 |
+
# if db_exists:
|
| 227 |
+
embeddings = _load_embeddings_from_db(db_exists, domain)
|
| 228 |
+
# Create extractor instance
|
| 229 |
+
#extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 230 |
+
extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF/llama-2-7b.Q4_0.gguf")
|
| 231 |
+
# llm = HuggingFaceHub(
|
| 232 |
+
# repo_id="google/flan-t5-xxl",
|
| 233 |
+
# model_kwargs={"temperature": 1, "max_length": 1000000},
|
| 234 |
+
# )
|
| 235 |
+
# else:
|
| 236 |
+
answer = _search(question, extractor)
|
| 237 |
+
return {"question": question, "answer": answer}
|
extractor.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
|
| 3 |
+
# from transformers import pipeline
|
| 4 |
+
from txtai.embeddings import Embeddings
|
| 5 |
+
from txtai.pipeline import Extractor
|
| 6 |
+
from langchain.document_loaders import WebBaseLoader
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
|
| 9 |
+
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 10 |
+
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 11 |
+
app = FastAPI(docs_url="/")
|
| 12 |
+
|
| 13 |
+
# Create embeddings model with content support
|
| 14 |
+
embeddings = Embeddings(
|
| 15 |
+
{"path": "sentence-transformers/all-MiniLM-L6-v2", "content": True}
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Create extractor instance
|
| 20 |
+
# extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _stream(dataset, limit, index: int = 0):
|
| 24 |
+
for row in dataset:
|
| 25 |
+
yield (index, row.page_content, None)
|
| 26 |
+
index += 1
|
| 27 |
+
|
| 28 |
+
if index >= limit:
|
| 29 |
+
break
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _max_index_id(path):
|
| 33 |
+
db = sqlite3.connect(path)
|
| 34 |
+
|
| 35 |
+
table = "sections"
|
| 36 |
+
df = pd.read_sql_query(f"select * from {table}", db)
|
| 37 |
+
return {"max_index": df["indexid"].max()}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def _prompt(question):
|
| 41 |
+
return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 42 |
+
Question: {question}
|
| 43 |
+
Context: """
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
async def _search(query, extractor, question=None):
|
| 47 |
+
# Default question to query if empty
|
| 48 |
+
if not question:
|
| 49 |
+
question = query
|
| 50 |
+
|
| 51 |
+
return extractor([("answer", query, _prompt(question), False)])[0][1]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _text_splitter(doc):
|
| 55 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 56 |
+
chunk_size=500,
|
| 57 |
+
chunk_overlap=50,
|
| 58 |
+
length_function=len,
|
| 59 |
+
)
|
| 60 |
+
return text_splitter.transform_documents(doc)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def _load_docs(path: str):
|
| 64 |
+
load_doc = WebBaseLoader(path).load()
|
| 65 |
+
doc = _text_splitter(load_doc)
|
| 66 |
+
return doc
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
async def _upsert_docs(doc):
|
| 70 |
+
max_index = _max_index_id("index/documents")
|
| 71 |
+
embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
|
| 72 |
+
embeddings.save("index")
|
| 73 |
+
|
| 74 |
+
return embeddings
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@app.put("/rag/{path}")
|
| 78 |
+
async def get_doc_path(path: str):
|
| 79 |
+
return path
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@app.get("/rag")
|
| 83 |
+
async def rag(question: str):
|
| 84 |
+
# question = "what is the document about?"
|
| 85 |
+
embeddings.load("index")
|
| 86 |
+
path = await get_doc_path(path)
|
| 87 |
+
doc = _load_docs(path)
|
| 88 |
+
embeddings = _upsert_docs(doc)
|
| 89 |
+
|
| 90 |
+
# Create extractor instance
|
| 91 |
+
extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 92 |
+
answer = await _search(question, extractor)
|
| 93 |
+
# print(question, answer)
|
| 94 |
+
return {answer}
|
main.py
CHANGED
|
@@ -1,60 +1,85 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
-
from transformers import pipeline
|
| 3 |
from txtai.embeddings import Embeddings
|
| 4 |
from txtai.pipeline import Extractor
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
from
|
| 8 |
|
| 9 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 10 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 11 |
app = FastAPI(docs_url="/")
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
Question: {question}
|
| 44 |
Context: """
|
| 45 |
|
| 46 |
|
| 47 |
-
def
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
#
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
#
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
|
|
|
| 2 |
from txtai.embeddings import Embeddings
|
| 3 |
from txtai.pipeline import Extractor
|
| 4 |
+
import os
|
| 5 |
+
from langchain import HuggingFaceHub
|
| 6 |
+
from langchain.prompts import PromptTemplate
|
| 7 |
+
from langchain.chains import LLMChain
|
| 8 |
|
| 9 |
+
# from transformers import pipeline
|
| 10 |
|
| 11 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 12 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 13 |
app = FastAPI(docs_url="/")
|
| 14 |
|
| 15 |
+
# @app.get("/generate")
|
| 16 |
+
# def generate(text: str):
|
| 17 |
+
# """
|
| 18 |
+
# Using the text2text-generation pipeline from `transformers`, generate text
|
| 19 |
+
# from the given input text. The model used is `google/flan-t5-small`, which
|
| 20 |
+
# can be found [here](https://huggingface.co/google/flan-t5-small).
|
| 21 |
+
# """
|
| 22 |
+
# output = pipe(text)
|
| 23 |
+
# return {"output": output[0]["generated_text"]}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def _check_if_db_exists(db_path: str) -> bool:
|
| 27 |
+
return os.path.exists(db_path)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def _load_embeddings_from_db(
|
| 31 |
+
db_present: bool,
|
| 32 |
+
domain: str,
|
| 33 |
+
path: str = "sentence-transformers/all-MiniLM-L6-v2",
|
| 34 |
+
):
|
| 35 |
+
# Create embeddings model with content support
|
| 36 |
+
embeddings = Embeddings({"path": path, "content": True})
|
| 37 |
+
# if Vector DB is not present
|
| 38 |
+
if not db_present:
|
| 39 |
+
return embeddings
|
| 40 |
+
else:
|
| 41 |
+
if domain == "":
|
| 42 |
+
embeddings.load("index") # change this later
|
| 43 |
+
else:
|
| 44 |
+
print(3)
|
| 45 |
+
embeddings.load(f"index/{domain}")
|
| 46 |
+
return embeddings
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _prompt(question):
|
| 50 |
+
return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 51 |
Question: {question}
|
| 52 |
Context: """
|
| 53 |
|
| 54 |
|
| 55 |
+
def _search(query, extractor, question=None):
|
| 56 |
+
# Default question to query if empty
|
| 57 |
+
if not question:
|
| 58 |
+
question = query
|
| 59 |
+
|
| 60 |
+
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
|
| 61 |
+
# Question: {question}
|
| 62 |
+
# Context: """
|
| 63 |
+
|
| 64 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
| 65 |
+
# llm_chain = LLMChain(prompt=prompt, llm=extractor)
|
| 66 |
+
|
| 67 |
+
# return {"question": question, "answer": llm_chain.run(question)}
|
| 68 |
+
return extractor([("answer", query, _prompt(question), False)])[0][1]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@app.get("/rag")
|
| 72 |
+
def rag(domain: str, question: str):
|
| 73 |
+
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}\index\{domain}\documents")
|
| 74 |
+
print(db_exists)
|
| 75 |
+
# if db_exists:
|
| 76 |
+
embeddings = _load_embeddings_from_db(db_exists, domain)
|
| 77 |
+
# Create extractor instance
|
| 78 |
+
extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 79 |
+
# llm = HuggingFaceHub(
|
| 80 |
+
# repo_id="google/flan-t5-xxl",
|
| 81 |
+
# model_kwargs={"temperature": 1, "max_length": 1000000},
|
| 82 |
+
# )
|
| 83 |
+
# else:
|
| 84 |
+
answer = _search(question, extractor)
|
| 85 |
+
return {"question": question, "answer": answer}
|
requirements.txt
CHANGED
|
@@ -2,5 +2,11 @@ fastapi==0.74.*
|
|
| 2 |
requests==2.27.*
|
| 3 |
uvicorn[standard]==0.17.*
|
| 4 |
sentencepiece==0.1.*
|
|
|
|
|
|
|
| 5 |
txtai==6.0.*
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
requests==2.27.*
|
| 3 |
uvicorn[standard]==0.17.*
|
| 4 |
sentencepiece==0.1.*
|
| 5 |
+
torch==1.12.*
|
| 6 |
+
transformers==4.*
|
| 7 |
txtai==6.0.*
|
| 8 |
+
langchain==0.0.301
|
| 9 |
+
langsmith==0.0.40
|
| 10 |
+
bs4==0.0.1
|
| 11 |
+
pandas==2.1.1
|
| 12 |
+
SQLAlchemy==2.0.21
|