Spaces:
Runtime error
Runtime error
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| from diffusers import StableDiffusionUpscalePipeline | |
| import torch | |
| import gradio as gr | |
| import time | |
| import spaces | |
| from segment_utils import( | |
| segment_image, | |
| restore_result, | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f'{device} is available') | |
| model_id = "stabilityai/stable-diffusion-x4-upscaler" | |
| upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| upscale_pipe = upscale_pipe.to(device) | |
| DEFAULT_SRC_PROMPT = "a person with pefect face" | |
| DEFAULT_CATEGORY = "face" | |
| def create_demo() -> gr.Blocks: | |
| def upscale_image( | |
| input_image: Image, | |
| prompt: str, | |
| num_inference_steps: int = 10, | |
| ): | |
| time_cost_str = '' | |
| run_task_time = 0 | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| upscaled_image = upscale_pipe( | |
| prompt=prompt, | |
| image=input_image, | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| return upscaled_image, time_cost_str | |
| def get_time_cost(run_task_time, time_cost_str): | |
| now_time = int(time.time()*1000) | |
| if run_task_time == 0: | |
| time_cost_str = 'start' | |
| else: | |
| if time_cost_str != '': | |
| time_cost_str += f'-->' | |
| time_cost_str += f'{now_time - run_task_time}' | |
| run_task_time = now_time | |
| return run_task_time, time_cost_str | |
| with gr.Blocks() as demo: | |
| croper = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) | |
| with gr.Column(): | |
| num_inference_steps = gr.Number(label="Num Inference Steps", value=5) | |
| generate_size = gr.Number(label="Generate Size", value=512) | |
| g_btn = gr.Button("Upscale Image") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="pil") | |
| with gr.Column(): | |
| restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) | |
| origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False, visible=False) | |
| upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) | |
| download_path = gr.File(label="Download the output image", interactive=False) | |
| generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
| category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
| mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False) | |
| mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False) | |
| g_btn.click( | |
| fn=segment_image, | |
| inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
| outputs=[origin_area_image, croper], | |
| ).success( | |
| fn=upscale_image, | |
| inputs=[origin_area_image, input_image_prompt, num_inference_steps], | |
| outputs=[upscaled_image, generated_cost], | |
| ).success( | |
| fn=restore_result, | |
| inputs=[croper, category, upscaled_image], | |
| outputs=[restored_image, download_path], | |
| ) | |
| return demo | |