Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn.functional as F | |
| from torchcomp import compexp_gain, db2amp | |
| from torchlpc import sample_wise_lpc | |
| from typing import List, Tuple, Union, Any, Optional | |
| import math | |
| def inv_22(a, b, c, d): | |
| return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c) | |
| def eig_22(a, b, c, d): | |
| # https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf | |
| T = a + d | |
| D = a * d - b * c | |
| half_T = T * 0.5 | |
| root = torch.sqrt(half_T * half_T - D) # + 0j) | |
| L = torch.stack([half_T + root, half_T - root]) | |
| y = (L - a) / b | |
| # y = c / L | |
| V = torch.stack([torch.ones_like(y), y]) | |
| return L, V / V.abs().square().sum(0).sqrt() | |
| def fir(x, b): | |
| padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0)) | |
| return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape) | |
| def allpole(x: torch.Tensor, a: torch.Tensor): | |
| h = x.reshape(-1, x.shape[-1]) | |
| return sample_wise_lpc( | |
| h, | |
| a.broadcast_to(h.shape + a.shape), | |
| ).reshape(*x.shape) | |
| def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2): | |
| b0 = b0 / a0 | |
| b1 = b1 / a0 | |
| b2 = b2 / a0 | |
| a1 = a1 / a0 | |
| a2 = a2 / a0 | |
| beta1 = b1 - b0 * a1 | |
| beta2 = b2 - b0 * a2 | |
| tmp = a1.square() - 4 * a2 | |
| if tmp < 0: | |
| pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp)) | |
| u = -1j * x[..., :-1] | |
| h = sample_wise_lpc( | |
| u.reshape(-1, u.shape[-1]), | |
| -pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1), | |
| ).reshape(*u.shape) | |
| h = ( | |
| h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag) | |
| - beta1 * h.imag | |
| ) | |
| else: | |
| L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1)) | |
| inv_V = inv_22(*V.view(-1)) | |
| C = torch.stack([beta1, beta2]) @ V | |
| # project input to eigen space | |
| h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1] | |
| L = L.unsqueeze(-1).broadcast_to(h.shape) | |
| h = ( | |
| sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1)) | |
| .reshape(*h.shape) | |
| .transpose(-2, -1) | |
| ) @ C | |
| tmp = b0 * x | |
| y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1) | |
| return y | |
| def highpass_biquad_coef( | |
| sample_rate: int, | |
| cutoff_freq: torch.Tensor, | |
| Q: torch.Tensor, | |
| ): | |
| w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
| alpha = torch.sin(w0) / 2.0 / Q | |
| b0 = (1 + torch.cos(w0)) / 2 | |
| b1 = -1 - torch.cos(w0) | |
| b2 = b0 | |
| a0 = 1 + alpha | |
| a1 = -2 * torch.cos(w0) | |
| a2 = 1 - alpha | |
| return b0, b1, b2, a0, a1, a2 | |
| def apply_biquad(bq): | |
| return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs)) | |
| highpass_biquad = apply_biquad(highpass_biquad_coef) | |
| def lowpass_biquad_coef( | |
| sample_rate: int, | |
| cutoff_freq: torch.Tensor, | |
| Q: torch.Tensor, | |
| ): | |
| w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
| alpha = torch.sin(w0) / 2 / Q | |
| b0 = (1 - torch.cos(w0)) / 2 | |
| b1 = 1 - torch.cos(w0) | |
| b2 = b0 | |
| a0 = 1 + alpha | |
| a1 = -2 * torch.cos(w0) | |
| a2 = 1 - alpha | |
| return b0, b1, b2, a0, a1, a2 | |
| def equalizer_biquad_coef( | |
| sample_rate: int, | |
| center_freq: torch.Tensor, | |
| gain: torch.Tensor, | |
| Q: torch.Tensor, | |
| ): | |
| w0 = 2 * torch.pi * center_freq / sample_rate | |
| A = torch.exp(gain / 40.0 * math.log(10)) | |
| alpha = torch.sin(w0) / 2 / Q | |
| b0 = 1 + alpha * A | |
| b1 = -2 * torch.cos(w0) | |
| b2 = 1 - alpha * A | |
| a0 = 1 + alpha / A | |
| a1 = -2 * torch.cos(w0) | |
| a2 = 1 - alpha / A | |
| return b0, b1, b2, a0, a1, a2 | |
| def lowshelf_biquad_coef( | |
| sample_rate: int, | |
| cutoff_freq: torch.Tensor, | |
| gain: torch.Tensor, | |
| Q: torch.Tensor, | |
| ): | |
| w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
| A = torch.exp(gain / 40.0 * math.log(10)) | |
| alpha = torch.sin(w0) / 2 / Q | |
| cosw0 = torch.cos(w0) | |
| sqrtA = torch.sqrt(A) | |
| b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA) | |
| b1 = 2 * A * (A - 1 - (A + 1) * cosw0) | |
| b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA) | |
| a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA | |
| a1 = -2 * (A - 1 + (A + 1) * cosw0) | |
| a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA | |
| return b0, b1, b2, a0, a1, a2 | |
| def highshelf_biquad_coef( | |
| sample_rate: int, | |
| cutoff_freq: torch.Tensor, | |
| gain: torch.Tensor, | |
| Q: torch.Tensor, | |
| ): | |
| w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
| A = torch.exp(gain / 40.0 * math.log(10)) | |
| alpha = torch.sin(w0) / 2 / Q | |
| cosw0 = torch.cos(w0) | |
| sqrtA = torch.sqrt(A) | |
| b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA) | |
| b1 = -2 * A * (A - 1 + (A + 1) * cosw0) | |
| b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA) | |
| a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA | |
| a1 = 2 * (A - 1 - (A + 1) * cosw0) | |
| a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA | |
| return b0, b1, b2, a0, a1, a2 | |
| highpass_biquad = apply_biquad(highpass_biquad_coef) | |
| lowpass_biquad = apply_biquad(lowpass_biquad_coef) | |
| highshelf_biquad = apply_biquad(highshelf_biquad_coef) | |
| lowshelf_biquad = apply_biquad(lowshelf_biquad_coef) | |
| equalizer_biquad = apply_biquad(equalizer_biquad_coef) | |
| def avg(rms: torch.Tensor, avg_coef: torch.Tensor): | |
| assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1) | |
| h = rms * avg_coef | |
| return sample_wise_lpc( | |
| h, | |
| (avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1), | |
| ) | |
| def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor: | |
| return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt() | |
| def compressor_expander( | |
| x: torch.Tensor, | |
| avg_coef: Union[torch.Tensor, float], | |
| cmp_th: Union[torch.Tensor, float], | |
| cmp_ratio: Union[torch.Tensor, float], | |
| exp_th: Union[torch.Tensor, float], | |
| exp_ratio: Union[torch.Tensor, float], | |
| at: Union[torch.Tensor, float], | |
| rt: Union[torch.Tensor, float], | |
| make_up: torch.Tensor, | |
| lookahead_func=lambda x: x, | |
| ): | |
| rms = avg_rms(x, avg_coef=avg_coef) | |
| gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt) | |
| gain = lookahead_func(gain) | |
| return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1) | |