Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import itertools | |
| import logging | |
| import math | |
| import os | |
| from pathlib import Path | |
| import accelerate | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from packaging import version | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, PretrainedConfig | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| DiffusionPipeline, | |
| UNet2DConditionModel, | |
| StableDiffusionPipeline, | |
| DPMSolverMultistepScheduler, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils.import_utils import is_xformers_available | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| import random | |
| from transformers import ViTModel, ViTImageProcessor | |
| from models.celeb_embeddings import embedding_forward | |
| from models.embedding_manager import EmbeddingManagerId_adain, Embedding_discriminator | |
| from datasets_face.face_id import FaceIdDataset | |
| from utils import text_encoder_forward, set_requires_grad, add_noise_return_paras, latents_to_images, discriminator_r1_loss, discriminator_r1_loss_accelerator, downsampling, GANLoss | |
| import types | |
| import torch.nn as nn | |
| from tqdm import tqdm | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
| import importlib | |
| logger = get_logger(__name__) | |
| def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, | |
| subfolder="text_encoder", | |
| revision=revision, | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "RobertaSeriesModelWithTransformation": | |
| from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation | |
| return RobertaSeriesModelWithTransformation | |
| elif model_class == "T5EncoderModel": | |
| from transformers import T5EncoderModel | |
| return T5EncoderModel | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a script for training Cones 2.") | |
| parser.add_argument( | |
| "--embedding_manager_config", | |
| type=str, | |
| default="datasets_face/identity_space.yaml", | |
| help=('config to load the train model and dataset'), | |
| ) | |
| parser.add_argument( | |
| "--d_reg_every", | |
| type=int, | |
| default=16, | |
| help="interval for applying r1 regularization" | |
| ) | |
| parser.add_argument( | |
| "--r1", | |
| type=float, | |
| default=1, | |
| help="weight of the r1 regularization" | |
| ) | |
| parser.add_argument( | |
| "--l_gan_lambda", | |
| type=float, | |
| default=1, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--l_consis_lambda", | |
| type=float, | |
| default=8, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default="/home/user/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/5cae40e6a2745ae2b01ad92ae5043f95f23644d6", | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_embedding_manager_path", | |
| type=str, | |
| default=None, | |
| help="pretrained_embedding_manager_path", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_embedding_manager_epoch", | |
| type=str, | |
| default=800, | |
| help="pretrained_embedding_manager_epoch", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help=( | |
| "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" | |
| " float32 precision." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="training_weight/normal_GAN", # training_weight/woman_GAN training_weight/man_GAN | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default= None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", | |
| type=int, default=8, | |
| help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--num_train_epochs", | |
| type=int, | |
| default=None | |
| ) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| # default=None, | |
| default=10001, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=1000, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via" | |
| " `--resume_from_checkpoint`. In the case that the checkpoint is better than the final trained model, the" | |
| " checkpoint can also be used for inference. Using a checkpoint for inference requires separate loading of" | |
| " the original pipeline and the individual checkpointed model components." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=5e-5, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=2, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--input_dim", | |
| type=int, | |
| default=64, | |
| help="randomly sampled vectors and dimensions of MLP input" | |
| ) | |
| parser.add_argument( | |
| "--experiment_name", | |
| type=str, | |
| default="normal_GAN", # "man_GAN" "woman_GAN" | |
| help="randomly sampled vectors and dimensions of MLP input" | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| return args | |
| def encode_prompt(prompt_batch, name_batch, text_encoder, tokenizer, embedding_manager, is_train=True, | |
| random_embeddings = None, timesteps = None): | |
| captions = [] | |
| proportion_empty_prompts = 0 | |
| for caption in prompt_batch: | |
| if random.random() < proportion_empty_prompts: | |
| captions.append("") | |
| elif isinstance(caption, str): | |
| captions.append(caption) | |
| elif isinstance(caption, (list, np.ndarray)): | |
| captions.append(random.choice(caption) if is_train else caption[0]) | |
| text_inputs = tokenizer( | |
| captions, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(text_encoder.device) | |
| positions_list = [] | |
| for prompt_ids in text_input_ids: | |
| position = int(torch.where(prompt_ids == 265)[0][0]) | |
| positions_list.append(position) | |
| prompt_embeds, other_return_dict = text_encoder_forward( | |
| text_encoder = text_encoder, | |
| input_ids = text_input_ids, | |
| name_batch = name_batch, | |
| output_hidden_states=True, | |
| embedding_manager = embedding_manager, | |
| random_embeddings = random_embeddings, | |
| timesteps = timesteps) | |
| return prompt_embeds, other_return_dict, positions_list | |
| def weights_init_normal(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Linear") != -1: | |
| torch.nn.init.normal_(m.weight.data, 0.0, 0.02) | |
| torch.nn.init.constant_(m.bias.data, 0.0) | |
| def main(args): | |
| args.output_dir = os.path.join(args.output_dir, args.experiment_name) | |
| print("output_dir", args.output_dir) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate | |
| # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. | |
| if args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: | |
| raise ValueError( | |
| "Gradient accumulation is not supported when training the text encoder in distributed training. " | |
| "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| # Load the tokenizer | |
| if args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| # import correct text encoder class | |
| text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| noise_scheduler.add_noise = types.MethodType(add_noise_return_paras, noise_scheduler) | |
| text_encoder = text_encoder_cls.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| text_encoder.text_model.embeddings.forward = embedding_forward.__get__(text_encoder.text_model.embeddings) | |
| embedding_manager_config = OmegaConf.load(args.embedding_manager_config) | |
| experiment_name = args.experiment_name | |
| Embedding_Manager = EmbeddingManagerId_adain( | |
| tokenizer, | |
| text_encoder, | |
| device = accelerator.device, | |
| training = True, | |
| num_embeds_per_token = embedding_manager_config.model.personalization_config.params.num_embeds_per_token, | |
| token_dim = embedding_manager_config.model.personalization_config.params.token_dim, | |
| mlp_depth = embedding_manager_config.model.personalization_config.params.mlp_depth, | |
| loss_type = embedding_manager_config.model.personalization_config.params.loss_type, | |
| input_dim = embedding_manager_config.model.personalization_config.params.input_dim, | |
| experiment_name = experiment_name, | |
| ) | |
| Embedding_Manager.name_projection_layer.apply(weights_init_normal) | |
| Embedding_D = Embedding_discriminator(embedding_manager_config.model.personalization_config.params.token_dim * 2, dropout_rate = 0.2) | |
| Embedding_D.apply(weights_init_normal) | |
| if args.pretrained_embedding_manager_path is not None: | |
| epoch = args.pretrained_embedding_manager_epoch | |
| embedding_manager_path = os.path.join(args.pretrained_embedding_manager_path, "embeddings_manager-{}.pt".format(epoch)) | |
| Embedding_Manager.load(embedding_manager_path) | |
| embedding_D_path = os.path.join(args.pretrained_embedding_manager_path, "embedding_D-{}.pt".format(epoch)) | |
| Embedding_D = torch.load(embedding_D_path) | |
| for param in Embedding_Manager.trainable_projection_parameters(): | |
| param.requires_grad = True | |
| Embedding_D.requires_grad = True | |
| text_encoder.requires_grad_(False) | |
| # Check that all trainable models are in full precision | |
| low_precision_error_string = ( | |
| "Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
| " doing mixed precision training. copy of the weights should still be float32." | |
| ) | |
| if accelerator.unwrap_model(text_encoder).dtype != torch.float32: | |
| raise ValueError( | |
| f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}." | |
| f" {low_precision_error_string}" | |
| ) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| projection_params_to_optimize = Embedding_Manager.trainable_projection_parameters() | |
| optimizer_projection = optimizer_class( | |
| projection_params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| discriminator_params_to_optimize = list(Embedding_D.parameters()) | |
| optimizer_discriminator = optimizer_class( | |
| discriminator_params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| train_dataset = FaceIdDataset( | |
| experiment_name = experiment_name | |
| ) | |
| print("dataset_length", train_dataset._length) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| num_workers=accelerator.num_processes, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler_proj = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer_projection, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| lr_scheduler_disc = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer_discriminator, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| Embedding_Manager, optimizer_projection, optimizer_discriminator, train_dataloader, lr_scheduler_proj, lr_scheduler_disc = accelerator.prepare( | |
| Embedding_Manager, optimizer_projection, optimizer_discriminator, train_dataloader, lr_scheduler_proj, lr_scheduler_disc | |
| ) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move vae and unet to device and cast to weight_dtype | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| Embedding_Manager.to(accelerator.device, dtype=weight_dtype) | |
| Embedding_D.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("identity_space", config=vars(args)) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the mos recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| resume_global_step = global_step * args.gradient_accumulation_steps | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
| # Only show the progress bar once on each machine. | |
| progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) | |
| progress_bar.set_description("Steps") | |
| num_iter = 0 | |
| # trained_images_num = 0 | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| print("=====================================") | |
| print("epoch:", epoch) | |
| print("=====================================") | |
| Embedding_Manager.train() | |
| for step, batch in enumerate(train_dataloader): | |
| # Skip steps until we reach the resumed step | |
| if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
| if step % args.gradient_accumulation_steps == 0: | |
| progress_bar.update(1) | |
| continue | |
| random_embeddings = torch.randn(1, 1, args.input_dim).to(accelerator.device) | |
| random_embeddings = random_embeddings.repeat(args.train_batch_size, 1, 1) | |
| encoder_hidden_states, other_return_dict, positions_list = encode_prompt(batch["caption"], | |
| batch["name"], | |
| text_encoder, tokenizer, | |
| Embedding_Manager, | |
| is_train=True, | |
| random_embeddings = random_embeddings, | |
| timesteps = 0) | |
| name_embeddings = other_return_dict["name_embeddings"] | |
| adained_total_embedding = other_return_dict["adained_total_embedding"] | |
| fake_emb = adained_total_embedding | |
| criterionGAN = GANLoss().to(accelerator.device) | |
| set_requires_grad(Embedding_D, True) | |
| optimizer_discriminator.zero_grad(set_to_none=args.set_grads_to_none) | |
| # fake | |
| pred_fake = Embedding_D(fake_emb.detach()) | |
| loss_D_fake = criterionGAN(pred_fake[0], False) | |
| # Real | |
| random_noise = torch.rand_like(name_embeddings) * 0.005 | |
| real_name_embeddings = random_noise + name_embeddings | |
| pred_real = Embedding_D(real_name_embeddings) | |
| loss_D_real = criterionGAN(pred_real[0], True) | |
| loss_D = (loss_D_fake + loss_D_real) * 0.5 | |
| accelerator.backward(loss_D) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(discriminator_params_to_optimize, args.max_grad_norm) | |
| optimizer_discriminator.step() | |
| set_requires_grad(Embedding_D, False) | |
| optimizer_projection.zero_grad(set_to_none=args.set_grads_to_none) | |
| pred_fake = Embedding_D(fake_emb) | |
| loss_G_GAN = criterionGAN(pred_fake[0], True) | |
| num_embeddings = encoder_hidden_states.size(0) | |
| loss_consistency = 0.0 | |
| for i in range(num_embeddings): | |
| position1 = positions_list[i] | |
| name_embedding1 = torch.cat([encoder_hidden_states[i][position1], encoder_hidden_states[i][position1 + 1]], dim=0) | |
| for j in range(i + 1, num_embeddings): | |
| position2 = positions_list[j] | |
| name_embedding2 = torch.cat([encoder_hidden_states[j][position2], encoder_hidden_states[j][position2 + 1]], dim=0) | |
| loss_consistency += F.mse_loss(name_embedding1, name_embedding2) | |
| loss_consistency /= (num_embeddings * (num_embeddings - 1)) / 2 | |
| loss = loss_G_GAN * args.l_gan_lambda + loss_consistency * args.l_consis_lambda | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(projection_params_to_optimize, args.max_grad_norm) | |
| optimizer_projection.step() | |
| lr_scheduler_proj.step() | |
| lr_scheduler_disc.step() | |
| num_iter += 1 | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| save_path = os.path.join(args.output_dir, f"embeddings_manager-{global_step}.pt") | |
| # accelerator.save_state(save_path) | |
| try: | |
| Embedding_Manager.save(save_path) | |
| except: | |
| Embedding_Manager.module.save(save_path) | |
| save_path_d = os.path.join(args.output_dir, f"embedding_D-{global_step}.pt") | |
| Embedding_D.save(save_path_d) | |
| logger.info(f"Saved state to {save_path}") | |
| global_step += 1 | |
| adained_total_embeddings_max_min = (round(adained_total_embedding.max().detach().item(), 4), | |
| round(adained_total_embedding.min().detach().item(), 4)) | |
| logs = {"m1": adained_total_embeddings_max_min, | |
| "l_G_GAN": loss_G_GAN.detach().item(), | |
| "l_consistency": loss_consistency.detach().item(), | |
| "l_D_real": loss_D_real.detach().item(), | |
| "l_D_fake": loss_D_fake.detach().item(), | |
| "loss": loss.detach().item(), | |
| } | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |