Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,19 +21,25 @@ if not os.path.exists(model_path):
|
|
| 21 |
with open(model_path, 'wb') as f:
|
| 22 |
f.write(response.content)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
name = "flux-dev"
|
| 26 |
device = torch.device("cuda")
|
|
|
|
| 27 |
is_schnell = name == "flux-schnell"
|
| 28 |
|
| 29 |
def preprocess_image(image, target_width, target_height, crop=True):
|
| 30 |
if crop:
|
| 31 |
image = c_crop(image) # Crop the image to square
|
| 32 |
original_width, original_height = image.size
|
|
|
|
|
|
|
| 33 |
scale = max(target_width / original_width, target_height / original_height)
|
| 34 |
resized_width = int(scale * original_width)
|
| 35 |
resized_height = int(scale * original_height)
|
|
|
|
| 36 |
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
|
|
|
|
|
|
| 37 |
left = (resized_width - target_width) // 2
|
| 38 |
top = (resized_height - target_height) // 2
|
| 39 |
image = image.crop((left, top, left + target_width, top + target_height))
|
|
@@ -50,12 +56,13 @@ def preprocess_canny_image(image, target_width, target_height, crop=True):
|
|
| 50 |
@spaces.GPU(duration=120)
|
| 51 |
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
| 52 |
if random_seed:
|
| 53 |
-
seed = np.random.randint(0,
|
| 54 |
|
| 55 |
if not os.path.isdir("./controlnet_results/"):
|
| 56 |
os.makedirs("./controlnet_results/")
|
| 57 |
|
| 58 |
torch_device = torch.device("cuda")
|
|
|
|
| 59 |
torch.cuda.empty_cache() # Clear GPU cache
|
| 60 |
|
| 61 |
model = load_flow_model(name, device=torch_device)
|
|
@@ -92,26 +99,22 @@ def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, h
|
|
| 92 |
|
| 93 |
return [processed_input, output_img] # Return both images for slider
|
| 94 |
|
| 95 |
-
def update_value(name, value):
|
| 96 |
-
return f"{name}: {value}"
|
| 97 |
-
|
| 98 |
interface = gr.Interface(
|
| 99 |
fn=generate_image,
|
| 100 |
inputs=[
|
| 101 |
gr.Textbox(label="Prompt"),
|
| 102 |
gr.Image(type="pil", label="Control Image"),
|
| 103 |
-
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"
|
| 104 |
-
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"
|
| 105 |
-
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"
|
| 106 |
-
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"
|
| 107 |
-
gr.
|
| 108 |
gr.Checkbox(label="Random Seed")
|
| 109 |
],
|
| 110 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
| 111 |
title="FLUX.1 Controlnet Canny",
|
| 112 |
-
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
| 113 |
-
live=True,
|
| 114 |
)
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
-
interface.launch()
|
|
|
|
| 21 |
with open(model_path, 'wb') as f:
|
| 22 |
f.write(response.content)
|
| 23 |
|
| 24 |
+
# Source: https://github.com/XLabs-AI/x-flux.git
|
| 25 |
name = "flux-dev"
|
| 26 |
device = torch.device("cuda")
|
| 27 |
+
offload = False
|
| 28 |
is_schnell = name == "flux-schnell"
|
| 29 |
|
| 30 |
def preprocess_image(image, target_width, target_height, crop=True):
|
| 31 |
if crop:
|
| 32 |
image = c_crop(image) # Crop the image to square
|
| 33 |
original_width, original_height = image.size
|
| 34 |
+
|
| 35 |
+
# Resize to match the target size without stretching
|
| 36 |
scale = max(target_width / original_width, target_height / original_height)
|
| 37 |
resized_width = int(scale * original_width)
|
| 38 |
resized_height = int(scale * original_height)
|
| 39 |
+
|
| 40 |
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
| 41 |
+
|
| 42 |
+
# Center crop to match the target dimensions
|
| 43 |
left = (resized_width - target_width) // 2
|
| 44 |
top = (resized_height - target_height) // 2
|
| 45 |
image = image.crop((left, top, left + target_width, top + target_height))
|
|
|
|
| 56 |
@spaces.GPU(duration=120)
|
| 57 |
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
| 58 |
if random_seed:
|
| 59 |
+
seed = np.random.randint(0, 10000)
|
| 60 |
|
| 61 |
if not os.path.isdir("./controlnet_results/"):
|
| 62 |
os.makedirs("./controlnet_results/")
|
| 63 |
|
| 64 |
torch_device = torch.device("cuda")
|
| 65 |
+
|
| 66 |
torch.cuda.empty_cache() # Clear GPU cache
|
| 67 |
|
| 68 |
model = load_flow_model(name, device=torch_device)
|
|
|
|
| 99 |
|
| 100 |
return [processed_input, output_img] # Return both images for slider
|
| 101 |
|
|
|
|
|
|
|
|
|
|
| 102 |
interface = gr.Interface(
|
| 103 |
fn=generate_image,
|
| 104 |
inputs=[
|
| 105 |
gr.Textbox(label="Prompt"),
|
| 106 |
gr.Image(type="pil", label="Control Image"),
|
| 107 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
| 108 |
+
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
| 109 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"),
|
| 110 |
+
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"),
|
| 111 |
+
gr.Number(value=42, label="Seed"),
|
| 112 |
gr.Checkbox(label="Random Seed")
|
| 113 |
],
|
| 114 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
| 115 |
title="FLUX.1 Controlnet Canny",
|
| 116 |
+
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
|
|
|
| 117 |
)
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
| 120 |
+
interface.launch()
|