Spaces:
Runtime error
Runtime error
| import math | |
| from typing import Callable | |
| import torch | |
| from einops import rearrange, repeat | |
| from torch import Tensor | |
| from .model import Flux | |
| from .modules.conditioner import HFEmbedder | |
| def get_noise( | |
| num_samples: int, | |
| height: int, | |
| width: int, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| seed: int, | |
| ): | |
| return torch.randn( | |
| num_samples, | |
| 16, | |
| # allow for packing | |
| 2 * math.ceil(height / 16), | |
| 2 * math.ceil(width / 16), | |
| device=device, | |
| dtype=dtype, | |
| generator=torch.Generator(device=device).manual_seed(seed), | |
| ) | |
| def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | |
| bs, c, h, w = img.shape | |
| if bs == 1 and not isinstance(prompt, str): | |
| bs = len(prompt) | |
| img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
| if img.shape[0] == 1 and bs > 1: | |
| img = repeat(img, "1 ... -> bs ...", bs=bs) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| txt = t5(prompt) | |
| if txt.shape[0] == 1 and bs > 1: | |
| txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
| txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
| vec = clip(prompt) | |
| if vec.shape[0] == 1 and bs > 1: | |
| vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
| return { | |
| "img": img, | |
| "img_ids": img_ids.to(img.device), | |
| "txt": txt.to(img.device), | |
| "txt_ids": txt_ids.to(img.device), | |
| "vec": vec.to(img.device), | |
| } | |
| def time_shift(mu: float, sigma: float, t: Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
| def get_lin_function( | |
| x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | |
| ) -> Callable[[float], float]: | |
| m = (y2 - y1) / (x2 - x1) | |
| b = y1 - m * x1 | |
| return lambda x: m * x + b | |
| def get_schedule( | |
| num_steps: int, | |
| image_seq_len: int, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| shift: bool = True, | |
| ) -> list[float]: | |
| # extra step for zero | |
| timesteps = torch.linspace(1, 0, num_steps + 1) | |
| # shifting the schedule to favor high timesteps for higher signal images | |
| if shift: | |
| # eastimate mu based on linear estimation between two points | |
| mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | |
| timesteps = time_shift(mu, 1.0, timesteps) | |
| return timesteps.tolist() | |
| def denoise( | |
| model: Flux, | |
| # model input | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt: Tensor, | |
| txt_ids: Tensor, | |
| vec: Tensor, | |
| # sampling parameters | |
| timesteps: list[float], | |
| guidance: float = 4.0, | |
| use_gs=False, | |
| gs=4, | |
| ): | |
| # this is ignored for schnell | |
| guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
| for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]): | |
| t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
| pred = model( | |
| img=img, | |
| img_ids=img_ids, | |
| txt=txt, | |
| txt_ids=txt_ids, | |
| y=vec, | |
| timesteps=t_vec, | |
| guidance=guidance_vec, | |
| ) | |
| if use_gs: | |
| pred_uncond, pred_text = pred.chunk(2) | |
| pred = pred_uncond + gs * (pred_text - pred_uncond) | |
| img = img + (t_prev - t_curr) * pred | |
| #if use_gs: | |
| # img = torch.cat([img] * 2) | |
| return img | |
| def denoise_controlnet( | |
| model: Flux, | |
| controlnet:None, | |
| # model input | |
| img: Tensor, | |
| img_ids: Tensor, | |
| txt: Tensor, | |
| txt_ids: Tensor, | |
| vec: Tensor, | |
| controlnet_cond, | |
| # sampling parameters | |
| timesteps: list[float], | |
| guidance: float = 4.0, | |
| controlnet_gs=0.7, | |
| ): | |
| # this is ignored for schnell | |
| guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
| for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]): | |
| t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
| block_res_samples = controlnet( | |
| img=img, | |
| img_ids=img_ids, | |
| controlnet_cond=controlnet_cond, | |
| txt=txt, | |
| txt_ids=txt_ids, | |
| y=vec, | |
| timesteps=t_vec, | |
| guidance=guidance_vec, | |
| ) | |
| pred = model( | |
| img=img, | |
| img_ids=img_ids, | |
| txt=txt, | |
| txt_ids=txt_ids, | |
| y=vec, | |
| timesteps=t_vec, | |
| guidance=guidance_vec, | |
| block_controlnet_hidden_states=[i * controlnet_gs for i in block_res_samples] | |
| ) | |
| img = img + (t_prev - t_curr) * pred | |
| #if use_gs: | |
| # img = torch.cat([img] * 2) | |
| return img | |
| def unpack(x: Tensor, height: int, width: int) -> Tensor: | |
| return rearrange( | |
| x, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=math.ceil(height / 16), | |
| w=math.ceil(width / 16), | |
| ph=2, | |
| pw=2, | |
| ) | |