DawnC commited on
Commit
872158c
1 Parent(s): a962e20

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +485 -21
app.py CHANGED
@@ -36,7 +36,472 @@ from ultralytics import YOLO
36
  import traceback
37
  import spaces
38
 
39
- model_yolo = YOLO('yolov8l.pt')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  history_manager = UserHistoryManager()
42
 
@@ -122,21 +587,6 @@ class BaseModel(nn.Module):
122
  logits = self.classifier(attended_features)
123
  return logits, attended_features
124
 
125
- # Initialize model
126
- num_classes = len(dog_breeds)
127
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
128
-
129
- # Initialize base model
130
- model = BaseModel(num_classes=num_classes, device=device).to(device)
131
-
132
- # Load model path
133
- model_path = '124_best_model_dog.pth'
134
- checkpoint = torch.load(model_path, map_location=device)
135
-
136
- # Load model state
137
- model.load_state_dict(checkpoint['base_model'], strict=False)
138
- model.eval()
139
-
140
  # Image preprocessing function
141
  def preprocess_image(image):
142
  # If the image is numpy.ndarray turn into PIL.Image
@@ -152,6 +602,7 @@ def preprocess_image(image):
152
 
153
  return transform(image).unsqueeze(0)
154
 
 
155
  async def predict_single_dog(image):
156
  """
157
  Predicts the dog breed using only the classifier.
@@ -160,11 +611,19 @@ async def predict_single_dog(image):
160
  Returns:
161
  tuple: (top1_prob, topk_breeds, relative_probs)
162
  """
163
- image_tensor = preprocess_image(image).to(device)
 
 
 
 
 
 
 
 
164
 
165
  with torch.no_grad():
166
  # Get model outputs (只使用logits,不需要features)
167
- logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
168
  probs = F.softmax(logits, dim=1)
169
 
170
  # Classifier prediction
@@ -183,9 +642,14 @@ async def predict_single_dog(image):
183
 
184
  return probabilities[0], breeds[:3], relative_probs
185
 
186
-
 
187
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
188
- results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
 
 
 
 
189
  dogs = []
190
  boxes = []
191
  for box in results.boxes:
@@ -265,7 +729,7 @@ def create_breed_comparison(breed1: str, breed2: str) -> dict:
265
 
266
  return comparison_data
267
 
268
-
269
  async def predict(image):
270
  """
271
  Main prediction function that handles both single and multiple dog detection.
 
36
  import traceback
37
  import spaces
38
 
39
+ # model_yolo = YOLO('yolov8l.pt')
40
+
41
+ # history_manager = UserHistoryManager()
42
+
43
+ # dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
44
+ # "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
45
+ # "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
46
+ # "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
47
+ # "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
48
+ # "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
49
+ # "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
50
+ # "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
51
+ # "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
52
+ # "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
53
+ # "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
54
+ # "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
55
+ # "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
56
+ # "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
57
+ # "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
58
+ # "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
59
+ # "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
60
+ # "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
61
+ # "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
62
+ # "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
63
+ # "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
64
+ # "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
65
+ # "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
66
+ # "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
67
+ # "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
68
+ # "Wire-Haired_Fox_Terrier"]
69
+
70
+
71
+ # class MultiHeadAttention(nn.Module):
72
+
73
+ # def __init__(self, in_dim, num_heads=8):
74
+ # super().__init__()
75
+ # self.num_heads = num_heads
76
+ # self.head_dim = max(1, in_dim // num_heads)
77
+ # self.scaled_dim = self.head_dim * num_heads
78
+ # self.fc_in = nn.Linear(in_dim, self.scaled_dim)
79
+ # self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
80
+ # self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
81
+ # self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
82
+ # self.fc_out = nn.Linear(self.scaled_dim, in_dim)
83
+
84
+ # def forward(self, x):
85
+ # N = x.shape[0]
86
+ # x = self.fc_in(x)
87
+ # q = self.query(x).view(N, self.num_heads, self.head_dim)
88
+ # k = self.key(x).view(N, self.num_heads, self.head_dim)
89
+ # v = self.value(x).view(N, self.num_heads, self.head_dim)
90
+
91
+ # energy = torch.einsum("nqd,nkd->nqk", [q, k])
92
+ # attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
93
+
94
+ # out = torch.einsum("nqk,nvd->nqd", [attention, v])
95
+ # out = out.reshape(N, self.scaled_dim)
96
+ # out = self.fc_out(out)
97
+ # return out
98
+
99
+ # class BaseModel(nn.Module):
100
+ # def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
101
+ # super().__init__()
102
+ # self.device = device
103
+ # self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
104
+ # self.feature_dim = self.backbone.classifier[1].in_features
105
+ # self.backbone.classifier = nn.Identity()
106
+
107
+ # self.num_heads = max(1, min(8, self.feature_dim // 64))
108
+ # self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
109
+
110
+ # self.classifier = nn.Sequential(
111
+ # nn.LayerNorm(self.feature_dim),
112
+ # nn.Dropout(0.3),
113
+ # nn.Linear(self.feature_dim, num_classes)
114
+ # )
115
+
116
+ # self.to(device)
117
+
118
+ # def forward(self, x):
119
+ # x = x.to(self.device)
120
+ # features = self.backbone(x)
121
+ # attended_features = self.attention(features)
122
+ # logits = self.classifier(attended_features)
123
+ # return logits, attended_features
124
+
125
+ # # Initialize model
126
+ # num_classes = len(dog_breeds)
127
+ # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
128
+
129
+ # # Initialize base model
130
+ # model = BaseModel(num_classes=num_classes, device=device).to(device)
131
+
132
+ # # Load model path
133
+ # model_path = '124_best_model_dog.pth'
134
+ # checkpoint = torch.load(model_path, map_location=device)
135
+
136
+ # # Load model state
137
+ # model.load_state_dict(checkpoint['base_model'], strict=False)
138
+ # model.eval()
139
+
140
+ # # Image preprocessing function
141
+ # def preprocess_image(image):
142
+ # # If the image is numpy.ndarray turn into PIL.Image
143
+ # if isinstance(image, np.ndarray):
144
+ # image = Image.fromarray(image)
145
+
146
+ # # Use torchvision.transforms to process images
147
+ # transform = transforms.Compose([
148
+ # transforms.Resize((224, 224)),
149
+ # transforms.ToTensor(),
150
+ # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
151
+ # ])
152
+
153
+ # return transform(image).unsqueeze(0)
154
+
155
+ # async def predict_single_dog(image):
156
+ # """
157
+ # Predicts the dog breed using only the classifier.
158
+ # Args:
159
+ # image: PIL Image or numpy array
160
+ # Returns:
161
+ # tuple: (top1_prob, topk_breeds, relative_probs)
162
+ # """
163
+ # image_tensor = preprocess_image(image).to(device)
164
+
165
+ # with torch.no_grad():
166
+ # # Get model outputs (只使用logits,不需要features)
167
+ # logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
168
+ # probs = F.softmax(logits, dim=1)
169
+
170
+ # # Classifier prediction
171
+ # top5_prob, top5_idx = torch.topk(probs, k=5)
172
+ # breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
173
+ # probabilities = [prob.item() for prob in top5_prob[0]]
174
+
175
+ # # Calculate relative probabilities
176
+ # sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
177
+ # relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
178
+
179
+ # # Debug output
180
+ # print("\nClassifier Predictions:")
181
+ # for breed, prob in zip(breeds[:5], probabilities[:5]):
182
+ # print(f"{breed}: {prob:.4f}")
183
+
184
+ # return probabilities[0], breeds[:3], relative_probs
185
+
186
+
187
+ # async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
188
+ # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
189
+ # dogs = []
190
+ # boxes = []
191
+ # for box in results.boxes:
192
+ # if box.cls == 16: # COCO dataset class for dog is 16
193
+ # xyxy = box.xyxy[0].tolist()
194
+ # confidence = box.conf.item()
195
+ # boxes.append((xyxy, confidence))
196
+
197
+ # if not boxes:
198
+ # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
199
+ # else:
200
+ # nms_boxes = non_max_suppression(boxes, iou_threshold)
201
+
202
+ # for box, confidence in nms_boxes:
203
+ # x1, y1, x2, y2 = box
204
+ # w, h = x2 - x1, y2 - y1
205
+ # x1 = max(0, x1 - w * 0.05)
206
+ # y1 = max(0, y1 - h * 0.05)
207
+ # x2 = min(image.width, x2 + w * 0.05)
208
+ # y2 = min(image.height, y2 + h * 0.05)
209
+ # cropped_image = image.crop((x1, y1, x2, y2))
210
+ # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
211
+
212
+ # return dogs
213
+
214
+ # def non_max_suppression(boxes, iou_threshold):
215
+ # keep = []
216
+ # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
217
+ # while boxes:
218
+ # current = boxes.pop(0)
219
+ # keep.append(current)
220
+ # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
221
+ # return keep
222
+
223
+
224
+ # def calculate_iou(box1, box2):
225
+ # x1 = max(box1[0], box2[0])
226
+ # y1 = max(box1[1], box2[1])
227
+ # x2 = min(box1[2], box2[2])
228
+ # y2 = min(box1[3], box2[3])
229
+
230
+ # intersection = max(0, x2 - x1) * max(0, y2 - y1)
231
+ # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
232
+ # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
233
+
234
+ # iou = intersection / float(area1 + area2 - intersection)
235
+ # return iou
236
+
237
+
238
+
239
+ # def create_breed_comparison(breed1: str, breed2: str) -> dict:
240
+ # breed1_info = get_dog_description(breed1)
241
+ # breed2_info = get_dog_description(breed2)
242
+
243
+ # # 標準化數值轉換
244
+ # value_mapping = {
245
+ # 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
246
+ # 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
247
+ # 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
248
+ # 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
249
+ # }
250
+
251
+ # comparison_data = {
252
+ # breed1: {},
253
+ # breed2: {}
254
+ # }
255
+
256
+ # for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
257
+ # comparison_data[breed] = {
258
+ # 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
259
+ # 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
260
+ # 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
261
+ # 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
262
+ # 'Good_with_Children': info['Good with Children'] == 'Yes',
263
+ # 'Original_Data': info
264
+ # }
265
+
266
+ # return comparison_data
267
+
268
+
269
+ # async def predict(image):
270
+ # """
271
+ # Main prediction function that handles both single and multiple dog detection.
272
+
273
+ # Args:
274
+ # image: PIL Image or numpy array
275
+
276
+ # Returns:
277
+ # tuple: (html_output, annotated_image, initial_state)
278
+ # """
279
+ # if image is None:
280
+ # return format_warning_html("Please upload an image to start."), None, None
281
+
282
+ # try:
283
+ # if isinstance(image, np.ndarray):
284
+ # image = Image.fromarray(image)
285
+
286
+ # # Detect dogs in the image
287
+ # dogs = await detect_multiple_dogs(image)
288
+ # color_scheme = get_color_scheme(len(dogs) == 1)
289
+
290
+ # # Prepare for annotation
291
+ # annotated_image = image.copy()
292
+ # draw = ImageDraw.Draw(annotated_image)
293
+
294
+ # try:
295
+ # font = ImageFont.truetype("arial.ttf", 24)
296
+ # except:
297
+ # font = ImageFont.load_default()
298
+
299
+ # dogs_info = ""
300
+
301
+ # # Process each detected dog
302
+ # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
303
+ # color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
304
+
305
+ # # Draw box and label on image
306
+ # draw.rectangle(box, outline=color, width=4)
307
+ # label = f"Dog {i+1}"
308
+ # label_bbox = draw.textbbox((0, 0), label, font=font)
309
+ # label_width = label_bbox[2] - label_bbox[0]
310
+ # label_height = label_bbox[3] - label_bbox[1]
311
+
312
+ # # Draw label background and text
313
+ # label_x = box[0] + 5
314
+ # label_y = box[1] + 5
315
+ # draw.rectangle(
316
+ # [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
317
+ # fill='white',
318
+ # outline=color,
319
+ # width=2
320
+ # )
321
+ # draw.text((label_x, label_y), label, fill=color, font=font)
322
+
323
+ # # Predict breed
324
+ # top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
325
+ # combined_confidence = detection_confidence * top1_prob
326
+
327
+ # # Format results based on confidence with error handling
328
+ # try:
329
+ # if combined_confidence < 0.2:
330
+ # dogs_info += format_error_message(color, i+1)
331
+ # elif top1_prob >= 0.45:
332
+ # breed = topk_breeds[0]
333
+ # description = get_dog_description(breed)
334
+ # # Handle missing breed description
335
+ # if description is None:
336
+ # # 如果沒有描述,創建一個基本描述
337
+ # description = {
338
+ # "Name": breed,
339
+ # "Size": "Unknown",
340
+ # "Exercise Needs": "Unknown",
341
+ # "Grooming Needs": "Unknown",
342
+ # "Care Level": "Unknown",
343
+ # "Good with Children": "Unknown",
344
+ # "Description": f"Identified as {breed.replace('_', ' ')}"
345
+ # }
346
+ # dogs_info += format_single_dog_result(breed, description, color)
347
+ # else:
348
+ # # 修改format_multiple_breeds_result的調用,包含錯誤處理
349
+ # dogs_info += format_multiple_breeds_result(
350
+ # topk_breeds,
351
+ # relative_probs,
352
+ # color,
353
+ # i+1,
354
+ # lambda breed: get_dog_description(breed) or {
355
+ # "Name": breed,
356
+ # "Size": "Unknown",
357
+ # "Exercise Needs": "Unknown",
358
+ # "Grooming Needs": "Unknown",
359
+ # "Care Level": "Unknown",
360
+ # "Good with Children": "Unknown",
361
+ # "Description": f"Identified as {breed.replace('_', ' ')}"
362
+ # }
363
+ # )
364
+ # except Exception as e:
365
+ # print(f"Error formatting results for dog {i+1}: {str(e)}")
366
+ # dogs_info += format_error_message(color, i+1)
367
+
368
+ # # Wrap final HTML output
369
+ # html_output = format_multi_dog_container(dogs_info)
370
+
371
+ # # Prepare initial state
372
+ # initial_state = {
373
+ # "dogs_info": dogs_info,
374
+ # "image": annotated_image,
375
+ # "is_multi_dog": len(dogs) > 1,
376
+ # "html_output": html_output
377
+ # }
378
+
379
+ # return html_output, annotated_image, initial_state
380
+
381
+ # except Exception as e:
382
+ # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
383
+ # print(error_msg)
384
+ # return format_warning_html(error_msg), None, None
385
+
386
+
387
+ # def show_details_html(choice, previous_output, initial_state):
388
+ # """
389
+ # Generate detailed HTML view for a selected breed.
390
+
391
+ # Args:
392
+ # choice: str, Selected breed option
393
+ # previous_output: str, Previous HTML output
394
+ # initial_state: dict, Current state information
395
+
396
+ # Returns:
397
+ # tuple: (html_output, gradio_update, updated_state)
398
+ # """
399
+ # if not choice:
400
+ # return previous_output, gr.update(visible=True), initial_state
401
+
402
+ # try:
403
+ # breed = choice.split("More about ")[-1]
404
+ # description = get_dog_description(breed)
405
+ # html_output = format_breed_details_html(description, breed)
406
+
407
+ # # Update state
408
+ # initial_state["current_description"] = html_output
409
+ # initial_state["original_buttons"] = initial_state.get("buttons", [])
410
+
411
+ # return html_output, gr.update(visible=True), initial_state
412
+
413
+ # except Exception as e:
414
+ # error_msg = f"An error occurred while showing details: {e}"
415
+ # print(error_msg)
416
+ # return format_warning_html(error_msg), gr.update(visible=True), initial_state
417
+
418
+ # def main():
419
+ # with gr.Blocks(css=get_css_styles()) as iface:
420
+ # # Header HTML
421
+
422
+ # gr.HTML("""
423
+ # <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
424
+ # <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
425
+ # 🐾 PawMatch AI
426
+ # </h1>
427
+ # <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
428
+ # Your Smart Dog Breed Guide
429
+ # </h2>
430
+ # <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
431
+ # <p style='color: #718096; font-size: 0.9em;'>
432
+ # Powered by AI • Breed Recognition • Smart Matching • Companion Guide
433
+ # </p>
434
+ # </header>
435
+ # """)
436
+
437
+ # # 先創建歷史組件實例(但不創建標籤頁)
438
+ # history_component = create_history_component()
439
+
440
+ # with gr.Tabs():
441
+ # # 1. 品種檢測標籤頁
442
+ # example_images = [
443
+ # 'Border_Collie.jpg',
444
+ # 'Golden_Retriever.jpeg',
445
+ # 'Saint_Bernard.jpeg',
446
+ # 'Samoyed.jpg',
447
+ # 'French_Bulldog.jpeg'
448
+ # ]
449
+ # detection_components = create_detection_tab(predict, example_images)
450
+
451
+ # # 2. 品種比較標籤頁
452
+ # comparison_components = create_comparison_tab(
453
+ # dog_breeds=dog_breeds,
454
+ # get_dog_description=get_dog_description,
455
+ # breed_health_info=breed_health_info,
456
+ # breed_noise_info=breed_noise_info
457
+ # )
458
+
459
+ # # 3. 品種推薦標籤頁
460
+ # recommendation_components = create_recommendation_tab(
461
+ # UserPreferences=UserPreferences,
462
+ # get_breed_recommendations=get_breed_recommendations,
463
+ # format_recommendation_html=format_recommendation_html,
464
+ # history_component=history_component
465
+ # )
466
+
467
+
468
+ # # 4. 最後創建歷史記錄標籤頁
469
+ # create_history_tab(history_component)
470
+
471
+ # # Footer
472
+ # gr.HTML('''
473
+ # <div style="
474
+ # display: flex;
475
+ # align-items: center;
476
+ # justify-content: center;
477
+ # gap: 20px;
478
+ # padding: 20px 0;
479
+ # ">
480
+ # <p style="
481
+ # font-family: 'Arial', sans-serif;
482
+ # font-size: 14px;
483
+ # font-weight: 500;
484
+ # letter-spacing: 2px;
485
+ # background: linear-gradient(90deg, #555, #007ACC);
486
+ # -webkit-background-clip: text;
487
+ # -webkit-text-fill-color: transparent;
488
+ # margin: 0;
489
+ # text-transform: uppercase;
490
+ # display: inline-block;
491
+ # ">EXPLORE THE CODE →</p>
492
+ # <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
493
+ # <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
494
+ # </a>
495
+ # </div>
496
+ # ''')
497
+
498
+ # return iface
499
+
500
+ # if __name__ == "__main__":
501
+ # iface = main()
502
+ # iface.launch()
503
+
504
+
505
 
506
  history_manager = UserHistoryManager()
507
 
 
587
  logits = self.classifier(attended_features)
588
  return logits, attended_features
589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
  # Image preprocessing function
591
  def preprocess_image(image):
592
  # If the image is numpy.ndarray turn into PIL.Image
 
602
 
603
  return transform(image).unsqueeze(0)
604
 
605
+ @spaces.GPU
606
  async def predict_single_dog(image):
607
  """
608
  Predicts the dog breed using only the classifier.
 
611
  Returns:
612
  tuple: (top1_prob, topk_breeds, relative_probs)
613
  """
614
+ if not hasattr(predict_single_dog, 'model'):
615
+ num_classes = len(dog_breeds)
616
+ predict_single_dog.model = BaseModel(num_classes=len(dog_breeds), device='cuda').to('cuda')
617
+ model_path = '124_best_model_dog.pth'
618
+ checkpoint = torch.load(model_path, map_location='cuda')
619
+ predict_single_dog.model.load_state_dict(checkpoint['base_model'], strict=False)
620
+ predict_single_dog.model.eval()
621
+
622
+ image_tensor = preprocess_image(image).to('cuda')
623
 
624
  with torch.no_grad():
625
  # Get model outputs (只使用logits,不需要features)
626
+ logits = predict_single_dog.model(image_tensor)[0]
627
  probs = F.softmax(logits, dim=1)
628
 
629
  # Classifier prediction
 
642
 
643
  return probabilities[0], breeds[:3], relative_probs
644
 
645
+
646
+ @spaces.GPU(duration=120)
647
  async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
648
+
649
+ if not hasattr(detect_multiple_dogs, 'model_yolo'):
650
+ detect_multiple_dogs.model_yolo = YOLO('yolov8l.pt')
651
+
652
+ results = detect_multiple_dogs.model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
653
  dogs = []
654
  boxes = []
655
  for box in results.boxes:
 
729
 
730
  return comparison_data
731
 
732
+ @spaces.GPU(duration=180)
733
  async def predict(image):
734
  """
735
  Main prediction function that handles both single and multiple dog detection.