Spaces:
Runtime error
Runtime error
Davidsamuel101
commited on
Commit
·
57da257
1
Parent(s):
a88643a
Added Description
Browse files- src/summarizer.py +1 -1
- src/text_extractor.py +34 -10
src/summarizer.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from tqdm import tqdm
|
3 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
4 |
from src.text_extractor import TextExtractor
|
|
|
1 |
+
0from typing import Dict, List, Tuple, Optional
|
2 |
from tqdm import tqdm
|
3 |
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
4 |
from src.text_extractor import TextExtractor
|
src/text_extractor.py
CHANGED
@@ -9,9 +9,9 @@ class TextExtractor:
|
|
9 |
pass
|
10 |
|
11 |
@staticmethod
|
12 |
-
def get_font_info(doc: Iterator, granularity=False) ->
|
13 |
"""
|
14 |
-
|
15 |
|
16 |
Args:
|
17 |
doc (<class 'fitz.fitz.Document'>): A fitz type document of the pdf file.
|
@@ -21,7 +21,8 @@ class TextExtractor:
|
|
21 |
ValueError: Raises Value Error if there are no font detected
|
22 |
|
23 |
Returns:
|
24 |
-
|
|
|
25 |
"""
|
26 |
styles = {}
|
27 |
font_counts = {}
|
@@ -38,16 +39,17 @@ class TextExtractor:
|
|
38 |
return font_counts, styles
|
39 |
|
40 |
@staticmethod
|
41 |
-
def get_font_tags(font_counts, styles):
|
42 |
"""
|
43 |
-
|
44 |
|
45 |
Args:
|
46 |
-
font_counts (
|
47 |
-
styles (
|
48 |
|
49 |
Returns:
|
50 |
-
|
|
|
51 |
"""
|
52 |
p_size = styles[font_counts[0][0]]['size']
|
53 |
# sorting the font sizes high to low, so that we can append the right integer to each tag
|
@@ -61,7 +63,7 @@ class TextExtractor:
|
|
61 |
return size_tag
|
62 |
|
63 |
@staticmethod
|
64 |
-
def assign_tags(doc, size_tag):
|
65 |
"""
|
66 |
Scrapes headers & paragraphs from PDF and return texts with element tags.
|
67 |
|
@@ -70,6 +72,9 @@ class TextExtractor:
|
|
70 |
size_tag (dict): Textual element tags for each size.
|
71 |
Returns:
|
72 |
list: Texts with pre-prended element tags
|
|
|
|
|
|
|
73 |
"""
|
74 |
texts = []
|
75 |
previous_s = {}
|
@@ -100,6 +105,24 @@ class TextExtractor:
|
|
100 |
|
101 |
@staticmethod
|
102 |
def get_slides(texts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
slides = {}
|
104 |
section = []
|
105 |
page = 1
|
@@ -130,4 +153,5 @@ class TextExtractor:
|
|
130 |
page += 1
|
131 |
except:
|
132 |
continue
|
133 |
-
return slides
|
|
|
|
9 |
pass
|
10 |
|
11 |
@staticmethod
|
12 |
+
def get_font_info(doc: Iterator, granularity=False) -> List[Tuple[str, int]]:
|
13 |
"""
|
14 |
+
Return a list containing the font sizes and their count number.
|
15 |
|
16 |
Args:
|
17 |
doc (<class 'fitz.fitz.Document'>): A fitz type document of the pdf file.
|
|
|
21 |
ValueError: Raises Value Error if there are no font detected
|
22 |
|
23 |
Returns:
|
24 |
+
List[Tuple[str, int]]:
|
25 |
+
Font Counts: [('12.0', 266), ('16.020000457763672', 18), ('13.979999542236328', 7), ('7.019999980926514', 2)]
|
26 |
"""
|
27 |
styles = {}
|
28 |
font_counts = {}
|
|
|
39 |
return font_counts, styles
|
40 |
|
41 |
@staticmethod
|
42 |
+
def get_font_tags(font_counts, styles) -> Dict[int, str]:
|
43 |
"""
|
44 |
+
Return a dictionary of font sizes and their corresponding tags.
|
45 |
|
46 |
Args:
|
47 |
+
font_counts (List[Tuple[str, int]]): The font sizes as keys and their count as values
|
48 |
+
styles (Dict[int, Dict[str, str]]): A style descriptioin of every font sizes.
|
49 |
|
50 |
Returns:
|
51 |
+
Dict[int, str]: Dictionary of the font sizes as keys and their tags as values.
|
52 |
+
Example: {12.0: '<p>', 16.020000457763672: '<h1>', 13.979999542236328: '<h2>', 7.019999980926514: '<s4>'}
|
53 |
"""
|
54 |
p_size = styles[font_counts[0][0]]['size']
|
55 |
# sorting the font sizes high to low, so that we can append the right integer to each tag
|
|
|
63 |
return size_tag
|
64 |
|
65 |
@staticmethod
|
66 |
+
def assign_tags(doc, size_tag) -> List[str]:
|
67 |
"""
|
68 |
Scrapes headers & paragraphs from PDF and return texts with element tags.
|
69 |
|
|
|
72 |
size_tag (dict): Textual element tags for each size.
|
73 |
Returns:
|
74 |
list: Texts with pre-prended element tags
|
75 |
+
Examples: ['<h1>Group Members: |', '<p>1. Stella Shania Mintara - 2301860596
|
76 |
+
| 2. David Samuel - 2301850304 | 3. Egivenia - 2301850134 | 4. Aurelius Va
|
77 |
+
nnes Leander - 2301862102 | 5. Juanrico Alvaro - 2301847316 ||']
|
78 |
"""
|
79 |
texts = []
|
80 |
previous_s = {}
|
|
|
105 |
|
106 |
@staticmethod
|
107 |
def get_slides(texts):
|
108 |
+
"""
|
109 |
+
Returns the tagged texts into a slide format dictionary where the page is the
|
110 |
+
key and the value is a list contaning the component of that page.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
texts (List[str]): PDF text with element tags.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
Dict: The text of the PDF seperated by the header 1 tags.
|
117 |
+
Examples: {'Page 1': [('h1', 'Group Members:'),
|
118 |
+
['p', '1. Stella Shania Mintara - 2301860596 2. David Samuel -
|
119 |
+
2301850304 3. Egivenia - 2301850134 4. Aurelius Vannes Leander -
|
120 |
+
2301862102 5.
|
121 |
+
Juanrico Alvaro - 2301847316']],
|
122 |
+
'Page 2': [('h1', 'Case Problem'),
|
123 |
+
['p', FreshMart is an established large-scale supermarket with branc
|
124 |
+
hes in popular areas across Jakarta and big cities]]}
|
125 |
+
"""
|
126 |
slides = {}
|
127 |
section = []
|
128 |
page = 1
|
|
|
153 |
page += 1
|
154 |
except:
|
155 |
continue
|
156 |
+
return slides
|
157 |
+
|