File size: 2,828 Bytes
f0a8738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e4d14
f0a8738
 
 
 
 
 
 
 
 
 
f262292
f0a8738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c35c0c4
 
f0a8738
 
 
 
 
 
b85773b
 
 
f0a8738
 
 
b85773b
 
 
f0a8738
 
 
6523597
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from text_extractor import TextExtractor
from tqdm import tqdm
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
from transformers import pipeline
from mdutils.mdutils import MdUtils
from pathlib import Path

import gradio as gr
import fitz
import torch
import copy
import os

FILENAME = ""

preprocess = TextExtractor()
model_name = "sshleifer/distill-pegasus-cnn-16-4"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = PegasusTokenizer.from_pretrained(model_name, max_length=500)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)

def summarize(slides):
    generated_slides = copy.deepcopy(slides)
    for page, contents in tqdm(generated_slides.items()):
        for idx, (tag, content) in enumerate(contents):
            if tag.startswith('p'): 
                try:
                    input = tokenizer(content, truncation=True, padding="longest", return_tensors="pt").to(device)
                    tensor = model.generate(**input)
                    summary = tokenizer.batch_decode(tensor, skip_special_tokens=True)[0]
                    contents[idx] = (tag, summary)
                except Exception as e:
                    print(e)
                    print("Summarization Fails")
    return generated_slides


def convert2markdown(generate_slides):
    mdFile = MdUtils(file_name=FILENAME, title=f'{FILENAME} Presentation')
    for k, v in generate_slides.items():
        mdFile.new_paragraph('---')
        for section in v:
            tag = section[0]
            content = section[1]
            if tag.startswith('h'):
                mdFile.new_header(level=int(tag[1]), title=content)
            if tag == 'p':
                contents = content.split('<n>')
                for content in contents:
                    mdFile.new_paragraph(content)
    mdFile.create_md_file()
    return f"{FILENAME}.md"

def inference(document):
    global FILENAME
    doc = fitz.open(document)
    FILENAME = document.name.split('/')[-1].split('.')[0]
    print(f"FILENAME: {FILENAME}")
    font_counts, styles = preprocess.get_font_info(doc, granularity=False)
    size_tag = preprocess.get_font_tags(font_counts, styles)
    texts = preprocess.assign_tags(doc, size_tag)
    slides = preprocess.get_slides(texts)
    generated_slides = summarize(slides)
    markdown_path = convert2markdown(generated_slides)
    # with open(markdown_path, 'rt') as f:
    #     markdown_str = f.read()
    return markdown_path


with gr.Blocks() as demo:
    inp = gr.File(file_types=['pdf'])
    out = gr.File(label="Markdown File")
    # out = gr.Textbox(label="Markdown Content")
    inference_btn = gr.Button("Summarized PDF")
    inference_btn.click(fn=inference, inputs=inp, outputs=out, show_progress=True, api_name="summarize")
    
demo.launch()