Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, Header
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
from pydantic import BaseModel
|
5 |
import openai
|
6 |
-
from typing import List, Optional,Union
|
7 |
import logging
|
8 |
from itertools import cycle
|
9 |
import asyncio
|
@@ -13,6 +13,10 @@ import uvicorn
|
|
13 |
from app import config
|
14 |
import requests
|
15 |
from datetime import datetime, timezone
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# 配置日志
|
18 |
logging.basicConfig(
|
@@ -36,12 +40,61 @@ API_KEYS = config.settings.API_KEYS
|
|
36 |
|
37 |
# 创建一个循环迭代器
|
38 |
key_cycle = cycle(API_KEYS)
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
class ChatRequest(BaseModel):
|
43 |
messages: List[dict]
|
44 |
-
model: str = "
|
45 |
temperature: Optional[float] = 0.7
|
46 |
stream: Optional[bool] = False
|
47 |
tools: Optional[List[dict]] = []
|
@@ -73,49 +126,104 @@ async def verify_authorization(authorization: str = Header(None)):
|
|
73 |
def get_gemini_models(api_key):
|
74 |
base_url = "https://generativelanguage.googleapis.com/v1beta"
|
75 |
url = f"{base_url}/models?key={api_key}"
|
76 |
-
|
77 |
try:
|
78 |
response = requests.get(url)
|
79 |
if response.status_code == 200:
|
80 |
gemini_models = response.json()
|
81 |
-
return
|
82 |
else:
|
83 |
print(f"Error: {response.status_code}")
|
84 |
print(response.text)
|
85 |
return None
|
86 |
-
|
87 |
except requests.RequestException as e:
|
88 |
print(f"Request failed: {e}")
|
89 |
return None
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
for model in gemini_models.get('models', []):
|
98 |
openai_model = {
|
99 |
-
"id": model[
|
100 |
"object": "model",
|
101 |
"created": int(datetime.now(timezone.utc).timestamp()), # 使用当前时间戳
|
102 |
"owned_by": "google", # 假设所有Gemini模型都由Google拥有
|
103 |
"permission": [], # Gemini API可能没有直接对应的权限信息
|
104 |
-
"root": model[
|
105 |
"parent": None, # Gemini API可能没有直接对应的父模型信息
|
106 |
}
|
107 |
openai_format["data"].append(openai_model)
|
108 |
-
|
109 |
return openai_format
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
@app.get("/v1/models")
|
113 |
@app.get("/hf/v1/models")
|
114 |
async def list_models(authorization: str = Header(None)):
|
115 |
await verify_authorization(authorization)
|
116 |
-
|
117 |
-
|
118 |
-
logger.info(f"Using API key: {api_key}")
|
119 |
try:
|
120 |
response = get_gemini_models(api_key)
|
121 |
logger.info("Successfully retrieved models list")
|
@@ -129,44 +237,125 @@ async def list_models(authorization: str = Header(None)):
|
|
129 |
@app.post("/hf/v1/chat/completions")
|
130 |
async def chat_completion(request: ChatRequest, authorization: str = Header(None)):
|
131 |
await verify_authorization(authorization)
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
@app.post("/v1/embeddings")
|
164 |
@app.post("/hf/v1/embeddings")
|
165 |
async def embedding(request: EmbeddingRequest, authorization: str = Header(None)):
|
166 |
await verify_authorization(authorization)
|
167 |
-
|
168 |
-
|
169 |
-
logger.info(f"Using API key: {api_key}")
|
170 |
|
171 |
try:
|
172 |
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
|
@@ -186,4 +375,4 @@ async def health_check():
|
|
186 |
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Header
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from fastapi.responses import StreamingResponse
|
4 |
from pydantic import BaseModel
|
5 |
import openai
|
6 |
+
from typing import List, Optional, Union
|
7 |
import logging
|
8 |
from itertools import cycle
|
9 |
import asyncio
|
|
|
13 |
from app import config
|
14 |
import requests
|
15 |
from datetime import datetime, timezone
|
16 |
+
import json
|
17 |
+
import httpx
|
18 |
+
import uuid
|
19 |
+
import time
|
20 |
|
21 |
# 配置日志
|
22 |
logging.basicConfig(
|
|
|
40 |
|
41 |
# 创建一个循环迭代器
|
42 |
key_cycle = cycle(API_KEYS)
|
43 |
+
|
44 |
+
# 创建两个独立的锁
|
45 |
+
key_cycle_lock = asyncio.Lock()
|
46 |
+
failure_count_lock = asyncio.Lock()
|
47 |
+
|
48 |
+
# 添加key失败计数记录
|
49 |
+
key_failure_counts = {key: 0 for key in API_KEYS}
|
50 |
+
MAX_FAILURES = 10 # 最大失败次数阈值
|
51 |
+
MAX_RETRIES = 3 # 最大重试次数
|
52 |
+
|
53 |
+
|
54 |
+
async def get_next_key():
|
55 |
+
"""仅获取下一个key,不检查失败次数"""
|
56 |
+
async with key_cycle_lock:
|
57 |
+
return next(key_cycle)
|
58 |
+
|
59 |
+
async def is_key_valid(key):
|
60 |
+
"""检查key是否有效"""
|
61 |
+
async with failure_count_lock:
|
62 |
+
return key_failure_counts[key] < MAX_FAILURES
|
63 |
+
|
64 |
+
async def reset_failure_counts():
|
65 |
+
"""重置所有key的失败计数"""
|
66 |
+
async with failure_count_lock:
|
67 |
+
for key in key_failure_counts:
|
68 |
+
key_failure_counts[key] = 0
|
69 |
+
|
70 |
+
async def get_next_working_key():
|
71 |
+
"""获取下一个可用的API key"""
|
72 |
+
initial_key = await get_next_key()
|
73 |
+
current_key = initial_key
|
74 |
+
|
75 |
+
while True:
|
76 |
+
if await is_key_valid(current_key):
|
77 |
+
return current_key
|
78 |
+
|
79 |
+
current_key = await get_next_key()
|
80 |
+
if current_key == initial_key: # 已经循环了一圈
|
81 |
+
await reset_failure_counts()
|
82 |
+
return current_key
|
83 |
+
|
84 |
+
async def handle_api_failure(api_key):
|
85 |
+
"""处理API调用失败"""
|
86 |
+
async with failure_count_lock:
|
87 |
+
key_failure_counts[api_key] += 1
|
88 |
+
if key_failure_counts[api_key] >= MAX_FAILURES:
|
89 |
+
logger.warning(f"API key {api_key} has failed {MAX_FAILURES} times, switching to next key")
|
90 |
+
|
91 |
+
# 在锁外获取新的key
|
92 |
+
return await get_next_working_key()
|
93 |
|
94 |
|
95 |
class ChatRequest(BaseModel):
|
96 |
messages: List[dict]
|
97 |
+
model: str = "gemini-1.5-flash-002"
|
98 |
temperature: Optional[float] = 0.7
|
99 |
stream: Optional[bool] = False
|
100 |
tools: Optional[List[dict]] = []
|
|
|
126 |
def get_gemini_models(api_key):
|
127 |
base_url = "https://generativelanguage.googleapis.com/v1beta"
|
128 |
url = f"{base_url}/models?key={api_key}"
|
129 |
+
|
130 |
try:
|
131 |
response = requests.get(url)
|
132 |
if response.status_code == 200:
|
133 |
gemini_models = response.json()
|
134 |
+
return convert_to_openai_models_format(gemini_models)
|
135 |
else:
|
136 |
print(f"Error: {response.status_code}")
|
137 |
print(response.text)
|
138 |
return None
|
139 |
+
|
140 |
except requests.RequestException as e:
|
141 |
print(f"Request failed: {e}")
|
142 |
return None
|
143 |
|
144 |
+
|
145 |
+
def convert_to_openai_models_format(gemini_models):
|
146 |
+
openai_format = {"object": "list", "data": []}
|
147 |
+
|
148 |
+
for model in gemini_models.get("models", []):
|
|
|
|
|
149 |
openai_model = {
|
150 |
+
"id": model["name"].split("/")[-1], # 取最后一部分作为ID
|
151 |
"object": "model",
|
152 |
"created": int(datetime.now(timezone.utc).timestamp()), # 使用当前时间戳
|
153 |
"owned_by": "google", # 假设所有Gemini模型都由Google拥有
|
154 |
"permission": [], # Gemini API可能没有直接对应的权限信息
|
155 |
+
"root": model["name"],
|
156 |
"parent": None, # Gemini API可能没有直接对应的父模型信息
|
157 |
}
|
158 |
openai_format["data"].append(openai_model)
|
159 |
+
|
160 |
return openai_format
|
161 |
+
|
162 |
+
|
163 |
+
def convert_messages_to_gemini_format(messages):
|
164 |
+
"""Convert OpenAI message format to Gemini format"""
|
165 |
+
gemini_messages = []
|
166 |
+
for message in messages:
|
167 |
+
gemini_message = {
|
168 |
+
"role": "user" if message["role"] == "user" else "model",
|
169 |
+
"parts": [{"text": message["content"]}],
|
170 |
+
}
|
171 |
+
gemini_messages.append(gemini_message)
|
172 |
+
return gemini_messages
|
173 |
+
|
174 |
+
|
175 |
+
def convert_gemini_response_to_openai(response, model, stream=False):
|
176 |
+
"""Convert Gemini response to OpenAI format"""
|
177 |
+
if stream:
|
178 |
+
# 处理流式响应
|
179 |
+
chunk = response
|
180 |
+
if not chunk["candidates"]:
|
181 |
+
return None
|
182 |
+
|
183 |
+
return {
|
184 |
+
"id": "chatcmpl-" + str(uuid.uuid4()),
|
185 |
+
"object": "chat.completion.chunk",
|
186 |
+
"created": int(time.time()),
|
187 |
+
"model": model,
|
188 |
+
"choices": [
|
189 |
+
{
|
190 |
+
"index": 0,
|
191 |
+
"delta": {
|
192 |
+
"content": chunk["candidates"][0]["content"]["parts"][0]["text"]
|
193 |
+
},
|
194 |
+
"finish_reason": None,
|
195 |
+
}
|
196 |
+
],
|
197 |
+
}
|
198 |
+
else:
|
199 |
+
# 处理普通响应
|
200 |
+
return {
|
201 |
+
"id": "chatcmpl-" + str(uuid.uuid4()),
|
202 |
+
"object": "chat.completion",
|
203 |
+
"created": int(time.time()),
|
204 |
+
"model": model,
|
205 |
+
"choices": [
|
206 |
+
{
|
207 |
+
"index": 0,
|
208 |
+
"message": {
|
209 |
+
"role": "assistant",
|
210 |
+
"content": response["candidates"][0]["content"]["parts"][0][
|
211 |
+
"text"
|
212 |
+
],
|
213 |
+
},
|
214 |
+
"finish_reason": "stop",
|
215 |
+
}
|
216 |
+
],
|
217 |
+
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
|
218 |
+
}
|
219 |
+
|
220 |
|
221 |
@app.get("/v1/models")
|
222 |
@app.get("/hf/v1/models")
|
223 |
async def list_models(authorization: str = Header(None)):
|
224 |
await verify_authorization(authorization)
|
225 |
+
api_key = await get_next_working_key()
|
226 |
+
logger.info(f"Using API key: {api_key}")
|
|
|
227 |
try:
|
228 |
response = get_gemini_models(api_key)
|
229 |
logger.info("Successfully retrieved models list")
|
|
|
237 |
@app.post("/hf/v1/chat/completions")
|
238 |
async def chat_completion(request: ChatRequest, authorization: str = Header(None)):
|
239 |
await verify_authorization(authorization)
|
240 |
+
api_key = await get_next_working_key()
|
241 |
+
logger.info(f"Chat completion request - Model: {request.model}")
|
242 |
+
retries = 0
|
243 |
+
|
244 |
+
while retries < MAX_RETRIES:
|
245 |
+
try:
|
246 |
+
logger.info(f"Attempt {retries + 1} with API key: {api_key}")
|
247 |
+
|
248 |
+
if request.model in config.settings.MODEL_SEARCH:
|
249 |
+
# Gemini API调用部分
|
250 |
+
gemini_messages = convert_messages_to_gemini_format(request.messages)
|
251 |
+
# 调用Gemini API
|
252 |
+
payload = {
|
253 |
+
"contents": gemini_messages,
|
254 |
+
"generationConfig": {
|
255 |
+
"temperature": request.temperature,
|
256 |
+
},
|
257 |
+
"tools": [{"googleSearch": {}}],
|
258 |
+
}
|
259 |
+
|
260 |
+
if request.stream:
|
261 |
+
logger.info("Streaming response enabled")
|
262 |
+
|
263 |
+
async def generate():
|
264 |
+
nonlocal api_key, retries
|
265 |
+
while retries < MAX_RETRIES:
|
266 |
+
try:
|
267 |
+
async with httpx.AsyncClient() as client:
|
268 |
+
stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:streamGenerateContent?alt=sse&key={api_key}"
|
269 |
+
async with client.stream("POST", stream_url, json=payload) as response:
|
270 |
+
if response.status_code == 429:
|
271 |
+
logger.warning(f"Rate limit reached for key: {api_key}")
|
272 |
+
api_key = await handle_api_failure(api_key)
|
273 |
+
logger.info(f"Retrying with new API key: {api_key}")
|
274 |
+
retries += 1
|
275 |
+
if retries >= MAX_RETRIES:
|
276 |
+
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n"
|
277 |
+
break
|
278 |
+
continue
|
279 |
+
|
280 |
+
if response.status_code != 200:
|
281 |
+
logger.error(f"Error in streaming response: {response.status_code}")
|
282 |
+
yield f"data: {json.dumps({'error': f'API error: {response.status_code}'})}\n\n"
|
283 |
+
break
|
284 |
+
|
285 |
+
async for line in response.aiter_lines():
|
286 |
+
if line.startswith("data: "):
|
287 |
+
try:
|
288 |
+
chunk = json.loads(line[6:])
|
289 |
+
openai_chunk = convert_gemini_response_to_openai(
|
290 |
+
chunk, request.model, stream=True
|
291 |
+
)
|
292 |
+
if openai_chunk:
|
293 |
+
yield f"data: {json.dumps(openai_chunk)}\n\n"
|
294 |
+
except json.JSONDecodeError:
|
295 |
+
continue
|
296 |
+
yield "data: [DONE]\n\n"
|
297 |
+
return
|
298 |
+
except Exception as e:
|
299 |
+
logger.error(f"Stream error: {str(e)}")
|
300 |
+
api_key = await handle_api_failure(api_key)
|
301 |
+
retries += 1
|
302 |
+
if retries >= MAX_RETRIES:
|
303 |
+
yield f"data: {json.dumps({'error': 'Max retries reached'})}\n\n"
|
304 |
+
break
|
305 |
+
continue
|
306 |
+
|
307 |
+
return StreamingResponse(content=generate(), media_type="text/event-stream")
|
308 |
+
else:
|
309 |
+
# 非流式响应
|
310 |
+
async with httpx.AsyncClient() as client:
|
311 |
+
non_stream_url = f"https://generativelanguage.googleapis.com/v1beta/models/{request.model}:generateContent?key={api_key}"
|
312 |
+
response = await client.post(non_stream_url, json=payload)
|
313 |
+
gemini_response = response.json()
|
314 |
+
logger.info("Chat completion successful")
|
315 |
+
return convert_gemini_response_to_openai(gemini_response, request.model)
|
316 |
+
|
317 |
+
# OpenAI API调用部分
|
318 |
+
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
|
319 |
+
response = client.chat.completions.create(
|
320 |
+
model=request.model,
|
321 |
+
messages=request.messages,
|
322 |
+
temperature=request.temperature,
|
323 |
+
stream=request.stream if hasattr(request, "stream") else False,
|
324 |
+
)
|
325 |
+
|
326 |
+
if hasattr(request, "stream") and request.stream:
|
327 |
+
logger.info("Streaming response enabled")
|
328 |
+
|
329 |
+
async def generate():
|
330 |
+
for chunk in response:
|
331 |
+
yield f"data: {chunk.model_dump_json()}\n\n"
|
332 |
+
logger.info("Chat completion successful")
|
333 |
+
return StreamingResponse(content=generate(), media_type="text/event-stream")
|
334 |
+
|
335 |
+
logger.info("Chat completion successful")
|
336 |
+
return response
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
logger.error(f"Error in chat completion: {str(e)}")
|
340 |
+
api_key = await handle_api_failure(api_key)
|
341 |
+
retries += 1
|
342 |
+
|
343 |
+
if retries >= MAX_RETRIES:
|
344 |
+
logger.error("Max retries reached, giving up")
|
345 |
+
raise HTTPException(status_code=500, detail="Max retries reached with all available API keys")
|
346 |
+
|
347 |
+
logger.info(f"Retrying with new API key: {api_key}")
|
348 |
+
continue
|
349 |
+
|
350 |
+
raise HTTPException(status_code=500, detail="Unexpected error in chat completion")
|
351 |
|
352 |
|
353 |
@app.post("/v1/embeddings")
|
354 |
@app.post("/hf/v1/embeddings")
|
355 |
async def embedding(request: EmbeddingRequest, authorization: str = Header(None)):
|
356 |
await verify_authorization(authorization)
|
357 |
+
api_key = await get_next_working_key()
|
358 |
+
logger.info(f"Using API key: {api_key}")
|
|
|
359 |
|
360 |
try:
|
361 |
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
|
|
|
375 |
|
376 |
|
377 |
if __name__ == "__main__":
|
378 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|