Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,7 @@ import torch
|
|
| 4 |
import soundfile as sf
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
| 7 |
-
|
| 8 |
|
| 9 |
class HuggingFaceFeatureExtractor:
|
| 10 |
def __init__(self, model_class, name):
|
|
@@ -26,7 +26,6 @@ class HuggingFaceFeatureExtractor:
|
|
| 26 |
outputs = self.model(**inputs)
|
| 27 |
return outputs.last_hidden_state
|
| 28 |
|
| 29 |
-
|
| 30 |
FEATURE_EXTRACTORS = {
|
| 31 |
"wavlm-base": lambda: HuggingFaceFeatureExtractor(WavLMModel, "microsoft/wavlm-base"),
|
| 32 |
"wavLM-V1": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-DeepFake_UTCN"),
|
|
@@ -34,23 +33,17 @@ FEATURE_EXTRACTORS = {
|
|
| 34 |
"wavLM-V3": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-UTCN_114k"),
|
| 35 |
}
|
| 36 |
|
| 37 |
-
|
| 38 |
model1 = joblib.load('model1.joblib')
|
| 39 |
model2 = joblib.load('model2.joblib')
|
| 40 |
model3 = joblib.load('model3.joblib')
|
| 41 |
model4 = joblib.load('model4.joblib')
|
| 42 |
final_model = joblib.load('final_model.joblib')
|
| 43 |
|
| 44 |
-
|
| 45 |
def process_audio(file_audio):
|
| 46 |
-
|
| 47 |
-
audio, sr = librosa.load(file_audio,sr=16000)
|
| 48 |
-
|
| 49 |
|
| 50 |
-
if len(audio.shape)>1:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
extractor_1 = FEATURE_EXTRACTORS['wavlm-base']()
|
| 56 |
extractor_2 = FEATURE_EXTRACTORS['wavLM-V1']()
|
|
@@ -84,17 +77,16 @@ def process_audio(file_audio):
|
|
| 84 |
final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]
|
| 85 |
|
| 86 |
if final_prob < 0.5:
|
| 87 |
-
return f"Fake with a confidence of: {100-final_prob[0] * 100:.2f}"
|
| 88 |
else:
|
| 89 |
-
return f"Real with a confidence of: {final_prob[0] * 100:.2f}"
|
| 90 |
-
|
| 91 |
|
| 92 |
interface = gr.Interface(
|
| 93 |
fn=process_audio,
|
| 94 |
inputs=gr.Audio(type="filepath"),
|
| 95 |
outputs="text",
|
| 96 |
title="Audio Deepfake Detection",
|
| 97 |
-
description="Upload an audio file to detect whether it is fake or real.",
|
| 98 |
)
|
| 99 |
|
| 100 |
interface.launch(share=True)
|
|
|
|
| 4 |
import soundfile as sf
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
| 7 |
+
import librosa
|
| 8 |
|
| 9 |
class HuggingFaceFeatureExtractor:
|
| 10 |
def __init__(self, model_class, name):
|
|
|
|
| 26 |
outputs = self.model(**inputs)
|
| 27 |
return outputs.last_hidden_state
|
| 28 |
|
|
|
|
| 29 |
FEATURE_EXTRACTORS = {
|
| 30 |
"wavlm-base": lambda: HuggingFaceFeatureExtractor(WavLMModel, "microsoft/wavlm-base"),
|
| 31 |
"wavLM-V1": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-DeepFake_UTCN"),
|
|
|
|
| 33 |
"wavLM-V3": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-UTCN_114k"),
|
| 34 |
}
|
| 35 |
|
|
|
|
| 36 |
model1 = joblib.load('model1.joblib')
|
| 37 |
model2 = joblib.load('model2.joblib')
|
| 38 |
model3 = joblib.load('model3.joblib')
|
| 39 |
model4 = joblib.load('model4.joblib')
|
| 40 |
final_model = joblib.load('final_model.joblib')
|
| 41 |
|
|
|
|
| 42 |
def process_audio(file_audio):
|
| 43 |
+
audio, sr = librosa.load(file_audio, sr=16000) # Resample to 16 kHz
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
if len(audio.shape) > 1:
|
| 46 |
+
audio = audio[0]
|
|
|
|
|
|
|
| 47 |
|
| 48 |
extractor_1 = FEATURE_EXTRACTORS['wavlm-base']()
|
| 49 |
extractor_2 = FEATURE_EXTRACTORS['wavLM-V1']()
|
|
|
|
| 77 |
final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]
|
| 78 |
|
| 79 |
if final_prob < 0.5:
|
| 80 |
+
return f"Fake with a confidence of: {100 - final_prob[0] * 100:.2f}%"
|
| 81 |
else:
|
| 82 |
+
return f"Real with a confidence of: {final_prob[0] * 100:.2f}%"
|
|
|
|
| 83 |
|
| 84 |
interface = gr.Interface(
|
| 85 |
fn=process_audio,
|
| 86 |
inputs=gr.Audio(type="filepath"),
|
| 87 |
outputs="text",
|
| 88 |
title="Audio Deepfake Detection",
|
| 89 |
+
description="Upload an audio file to detect whether it is fake or real. The system uses features ensamble from wavLM base and finetuned versions. Submitted to ASVSpoof5.",
|
| 90 |
)
|
| 91 |
|
| 92 |
interface.launch(share=True)
|