|  | import re | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import glob | 
					
						
						|  | import time | 
					
						
						|  | import logging | 
					
						
						|  | from datetime import datetime | 
					
						
						|  | import torch | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from transformers import AutoModelForCausalLM, AutoTokenizer | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MODEL_NAME = "StanfordAIMI/CheXagent-2-3b" | 
					
						
						|  | DTYPE = torch.bfloat16 | 
					
						
						|  | DEVICE = "cuda" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_filename = f"model_inference_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" | 
					
						
						|  | logging.basicConfig(filename=log_filename, level=logging.INFO, format="%(message)s") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def initialize_model() -> tuple[AutoModelForCausalLM, AutoTokenizer]: | 
					
						
						|  | """Initialize the CheXagent model and tokenizer. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | tuple containing: | 
					
						
						|  | - AutoModelForCausalLM: The initialized CheXagent model | 
					
						
						|  | - AutoTokenizer: The initialized tokenizer | 
					
						
						|  | """ | 
					
						
						|  | print("Loading model and tokenizer...") | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained( | 
					
						
						|  | MODEL_NAME, device_map="auto", trust_remote_code=True | 
					
						
						|  | ) | 
					
						
						|  | model = model.to(DTYPE) | 
					
						
						|  | model.eval() | 
					
						
						|  | return model, tokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_inference_request( | 
					
						
						|  | question_data: dict, | 
					
						
						|  | case_details: dict, | 
					
						
						|  | case_id: str, | 
					
						
						|  | question_id: str, | 
					
						
						|  | model: AutoModelForCausalLM, | 
					
						
						|  | tokenizer: AutoTokenizer, | 
					
						
						|  | ) -> str | None: | 
					
						
						|  | """Create and execute an inference request for the CheXagent model. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | question_data: Dictionary containing question details and metadata | 
					
						
						|  | case_details: Dictionary containing case information and image paths | 
					
						
						|  | case_id: Unique identifier for the medical case | 
					
						
						|  | question_id: Unique identifier for the question | 
					
						
						|  | model: The initialized CheXagent model | 
					
						
						|  | tokenizer: The initialized tokenizer | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | str | None: Single letter answer (A-F) if successful, None if failed | 
					
						
						|  | """ | 
					
						
						|  | system_prompt = """You are a medical imaging expert. Your task is to provide ONLY a single letter answer. | 
					
						
						|  | Rules: | 
					
						
						|  | 1. Respond with exactly one uppercase letter (A/B/C/D/E/F) | 
					
						
						|  | 2. Do not add periods, explanations, or any other text | 
					
						
						|  | 3. Do not use markdown or formatting | 
					
						
						|  | 4. Do not restate the question | 
					
						
						|  | 5. Do not explain your reasoning | 
					
						
						|  |  | 
					
						
						|  | Examples of valid responses: | 
					
						
						|  | A | 
					
						
						|  | B | 
					
						
						|  | C | 
					
						
						|  |  | 
					
						
						|  | Examples of invalid responses: | 
					
						
						|  | "A." | 
					
						
						|  | "Answer: B" | 
					
						
						|  | "C) This shows..." | 
					
						
						|  | "The answer is D" | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | prompt = f"""Given the following medical case: | 
					
						
						|  | Please answer this multiple choice question: | 
					
						
						|  | {question_data['question']} | 
					
						
						|  | Base your answer only on the provided images and case information.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | if isinstance(question_data["figures"], str): | 
					
						
						|  | try: | 
					
						
						|  | required_figures = json.loads(question_data["figures"]) | 
					
						
						|  | except json.JSONDecodeError: | 
					
						
						|  | required_figures = [question_data["figures"]] | 
					
						
						|  | elif isinstance(question_data["figures"], list): | 
					
						
						|  | required_figures = question_data["figures"] | 
					
						
						|  | else: | 
					
						
						|  | required_figures = [str(question_data["figures"])] | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error parsing figures: {e}") | 
					
						
						|  | required_figures = [] | 
					
						
						|  |  | 
					
						
						|  | required_figures = [ | 
					
						
						|  | fig if fig.startswith("Figure ") else f"Figure {fig}" for fig in required_figures | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_paths = [] | 
					
						
						|  | for figure in required_figures: | 
					
						
						|  | base_figure_num = "".join(filter(str.isdigit, figure)) | 
					
						
						|  | figure_letter = "".join(filter(str.isalpha, figure.split()[-1])) or None | 
					
						
						|  |  | 
					
						
						|  | matching_figures = [ | 
					
						
						|  | case_figure | 
					
						
						|  | for case_figure in case_details.get("figures", []) | 
					
						
						|  | if case_figure["number"] == f"Figure {base_figure_num}" | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for case_figure in matching_figures: | 
					
						
						|  | subfigures = [] | 
					
						
						|  | if figure_letter: | 
					
						
						|  | subfigures = [ | 
					
						
						|  | subfig | 
					
						
						|  | for subfig in case_figure.get("subfigures", []) | 
					
						
						|  | if subfig.get("number", "").lower().endswith(figure_letter.lower()) | 
					
						
						|  | or subfig.get("label", "").lower() == figure_letter.lower() | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | subfigures = case_figure.get("subfigures", []) | 
					
						
						|  |  | 
					
						
						|  | for subfig in subfigures: | 
					
						
						|  | if "local_path" in subfig: | 
					
						
						|  | image_paths.append("medrax/data/" + subfig["local_path"]) | 
					
						
						|  |  | 
					
						
						|  | if not image_paths: | 
					
						
						|  | print(f"No local images found for case {case_id}, question {question_id}") | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | start_time = time.time() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query = tokenizer.from_list_format( | 
					
						
						|  | [*[{"image": path} for path in image_paths], {"text": prompt}] | 
					
						
						|  | ) | 
					
						
						|  | conv = [{"from": "system", "value": system_prompt}, {"from": "human", "value": query}] | 
					
						
						|  | input_ids = tokenizer.apply_chat_template( | 
					
						
						|  | conv, add_generation_prompt=True, return_tensors="pt" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | output = model.generate( | 
					
						
						|  | input_ids.to(DEVICE), | 
					
						
						|  | do_sample=False, | 
					
						
						|  | num_beams=1, | 
					
						
						|  | temperature=1.0, | 
					
						
						|  | top_p=1.0, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | max_new_tokens=512, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | response = tokenizer.decode(output[input_ids.size(1) : -1]) | 
					
						
						|  | duration = time.time() - start_time | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | clean_answer = validate_answer(response) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_entry = { | 
					
						
						|  | "case_id": case_id, | 
					
						
						|  | "question_id": question_id, | 
					
						
						|  | "timestamp": datetime.now().isoformat(), | 
					
						
						|  | "model": MODEL_NAME, | 
					
						
						|  | "duration": round(duration, 2), | 
					
						
						|  | "model_answer": clean_answer, | 
					
						
						|  | "correct_answer": question_data["answer"], | 
					
						
						|  | "input": { | 
					
						
						|  | "question_data": { | 
					
						
						|  | "question": question_data["question"], | 
					
						
						|  | "explanation": question_data["explanation"], | 
					
						
						|  | "metadata": question_data.get("metadata", {}), | 
					
						
						|  | "figures": question_data["figures"], | 
					
						
						|  | }, | 
					
						
						|  | "image_paths": image_paths, | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  | logging.info(json.dumps(log_entry)) | 
					
						
						|  | return clean_answer | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(f"Error processing case {case_id}, question {question_id}: {str(e)}") | 
					
						
						|  | log_entry = { | 
					
						
						|  | "case_id": case_id, | 
					
						
						|  | "question_id": question_id, | 
					
						
						|  | "timestamp": datetime.now().isoformat(), | 
					
						
						|  | "model": MODEL_NAME, | 
					
						
						|  | "status": "error", | 
					
						
						|  | "error": str(e), | 
					
						
						|  | "input": { | 
					
						
						|  | "question_data": { | 
					
						
						|  | "question": question_data["question"], | 
					
						
						|  | "explanation": question_data["explanation"], | 
					
						
						|  | "metadata": question_data.get("metadata", {}), | 
					
						
						|  | "figures": question_data["figures"], | 
					
						
						|  | }, | 
					
						
						|  | "image_paths": image_paths, | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  | logging.info(json.dumps(log_entry)) | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def validate_answer(response_text: str) -> str | None: | 
					
						
						|  | """Enforce strict single-letter response format. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | response_text: Raw response text from the model | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | str | None: Single uppercase letter (A-F) if valid, None if invalid | 
					
						
						|  | """ | 
					
						
						|  | if not response_text: | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cleaned = response_text.strip().upper() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(cleaned) == 1 and cleaned in "ABCDEF": | 
					
						
						|  | return cleaned | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | match = re.search(r"([A-F])", cleaned) | 
					
						
						|  | return match.group(1) if match else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_benchmark_questions(case_id: str) -> list[str]: | 
					
						
						|  | """Find all question files for a given case ID. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | case_id: Unique identifier for the medical case | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | list[str]: List of paths to question JSON files | 
					
						
						|  | """ | 
					
						
						|  | benchmark_dir = "../benchmark/questions" | 
					
						
						|  | return glob.glob(f"{benchmark_dir}/{case_id}/{case_id}_*.json") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def count_total_questions() -> tuple[int, int]: | 
					
						
						|  | """Count total number of cases and questions in benchmark. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | tuple containing: | 
					
						
						|  | - int: Total number of cases | 
					
						
						|  | - int: Total number of questions | 
					
						
						|  | """ | 
					
						
						|  | total_cases = len(glob.glob("../benchmark/questions/*")) | 
					
						
						|  | total_questions = sum( | 
					
						
						|  | len(glob.glob(f"../benchmark/questions/{case_id}/*.json")) | 
					
						
						|  | for case_id in os.listdir("../benchmark/questions") | 
					
						
						|  | ) | 
					
						
						|  | return total_cases, total_questions | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  | with open("medrax/data/updated_cases.json", "r") as file: | 
					
						
						|  | data = json.load(file) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model, tokenizer = initialize_model() | 
					
						
						|  |  | 
					
						
						|  | total_cases, total_questions = count_total_questions() | 
					
						
						|  | cases_processed = 0 | 
					
						
						|  | questions_processed = 0 | 
					
						
						|  | skipped_questions = 0 | 
					
						
						|  |  | 
					
						
						|  | print(f"\nBeginning inference with {MODEL_NAME}") | 
					
						
						|  | print(f"Found {total_cases} cases with {total_questions} total questions") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for case_id, case_details in tqdm(data.items(), desc="Processing cases"): | 
					
						
						|  | question_files = load_benchmark_questions(case_id) | 
					
						
						|  | if not question_files: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | cases_processed += 1 | 
					
						
						|  | for question_file in tqdm( | 
					
						
						|  | question_files, desc=f"Processing questions for case {case_id}", leave=False | 
					
						
						|  | ): | 
					
						
						|  | with open(question_file, "r") as file: | 
					
						
						|  | question_data = json.load(file) | 
					
						
						|  | question_id = os.path.basename(question_file).split(".")[0] | 
					
						
						|  |  | 
					
						
						|  | questions_processed += 1 | 
					
						
						|  | answer = create_inference_request( | 
					
						
						|  | question_data, case_details, case_id, question_id, model, tokenizer | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if answer is None: | 
					
						
						|  | skipped_questions += 1 | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | print(f"\nCase {case_id}, Question {question_id}") | 
					
						
						|  | print(f"Model Answer: {answer}") | 
					
						
						|  | print(f"Correct Answer: {question_data['answer']}") | 
					
						
						|  |  | 
					
						
						|  | print(f"\nInference Summary:") | 
					
						
						|  | print(f"Total Cases Processed: {cases_processed}") | 
					
						
						|  | print(f"Total Questions Processed: {questions_processed}") | 
					
						
						|  | print(f"Total Questions Skipped: {skipped_questions}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |