import streamlit as st import cv2 import os import numpy as np from datetime import datetime import matplotlib.pyplot as plt from services.detection_service import detect_faults_solar, detect_faults_windmill from services.anomaly_service import track_anomalies, predict_anomaly from models.solar_model import load_solar_model from models.windmill_model import load_windmill_model from config.settings import VIDEO_FOLDER # Initialize session state for logs, metrics, and trends if 'logs' not in st.session_state: st.session_state.logs = [] if 'anomaly_counts' not in st.session_state: st.session_state.anomaly_counts = [] if 'frame_numbers' not in st.session_state: st.session_state.frame_numbers = [] if 'total_detected' not in st.session_state: st.session_state.total_detected = 0 def main(): st.title("Thermal Anomaly Monitoring Dashboard") st.markdown("**Status:** 🟢 Running") # Sidebar for video selection and detection type st.sidebar.header("Settings") video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')] if not video_files: st.error("No videos found in the 'data' folder. Please add .mp4 files.") return video_file = st.sidebar.selectbox("Select Video", video_files) detection_type = st.sidebar.selectbox("Detection Type", ["Solar Panel", "Windmill"]) # Load the appropriate model model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model() # Layout: Two columns for video feed and metrics col1, col2 = st.columns([3, 1]) with col1: st.subheader("Live Video Feed") video_placeholder = st.empty() with col2: st.subheader("Live Metrics") metrics_placeholder = st.empty() # Layout: Two columns for logs and trends col3, col4 = st.columns([1, 2]) with col3: st.subheader("Live Logs") logs_placeholder = st.empty() st.subheader("Last 5 Captured Events") events_placeholder = st.empty() with col4: st.subheader("Detection Trends") trends_placeholder = st.empty() # Process video if video_file: video_path = os.path.join(VIDEO_FOLDER, video_file) cap = cv2.VideoCapture(video_path) if not cap.isOpened(): st.error("Error: Could not open video file.") return frame_count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_count += 1 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Detect faults faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb) num_anomalies = len(faults) # Draw bounding boxes and labels for fault in faults: x, y = int(fault['location'][0]), int(fault['location'][1]) cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2) cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # Update video feed with timestamp timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") video_placeholder.image(frame_rgb, channels="RGB", caption=f"{timestamp}") # Update logs and metrics log_entry = f"{timestamp} - Frame {frame_count} - Anomalies: {num_anomalies}" st.session_state.logs.append(log_entry) st.session_state.total_detected += num_anomalies st.session_state.anomaly_counts.append(num_anomalies) st.session_state.frame_numbers.append(frame_count) # Keep only the last 100 frames for trends to avoid memory issues if len(st.session_state.frame_numbers) > 100: st.session_state.frame_numbers.pop(0) st.session_state.anomaly_counts.pop(0) # Update live logs (show all logs, scrollable) with logs_placeholder.container(): for log in st.session_state.logs[::-1]: # Reverse to show newest first st.write(log) # Update last 5 captured events with events_placeholder.container(): for log in st.session_state.logs[-5:][::-1]: # Last 5, newest first st.write(log) # Update live metrics metrics_placeholder.write(f""" **anomalies:** {num_anomalies} **total_detected:** {st.session_state.total_detected} """) # Predictive anomaly detection prediction = predict_anomaly(st.session_state.anomaly_counts) if prediction: metrics_placeholder.warning(f"**Prediction:** Potential issue detected - anomaly spike detected!") # Update trends graph fig, ax = plt.subplots() ax.plot(st.session_state.frame_numbers, st.session_state.anomaly_counts, marker='o') ax.set_title("Anomalies Over Time") ax.set_xlabel("Frame") ax.set_ylabel("Count") ax.grid(True) trends_placeholder.pyplot(fig) plt.close(fig) cap.release() st.success("Video processing completed.") if __name__ == "__main__": main()