Update app.py
Browse files
app.py
CHANGED
|
@@ -1,68 +1,142 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import cv2
|
| 3 |
-
from services.video_service import process_video
|
| 4 |
-
from services.detection_service import detect_faults_solar, detect_faults_windmill
|
| 5 |
-
from services.thermal_service import detect_hotspots
|
| 6 |
-
from services.shadow_detection import detect_shadows
|
| 7 |
-
from PIL import Image
|
| 8 |
import os
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
from models.solar_model import load_solar_model
|
| 12 |
from models.windmill_model import load_windmill_model
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def main():
|
| 18 |
-
st.title("
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
if video_file:
|
| 24 |
video_path = os.path.join(VIDEO_FOLDER, video_file)
|
| 25 |
-
st.write(f"Processing video: {video_file}")
|
| 26 |
-
|
| 27 |
-
# Open the video using OpenCV
|
| 28 |
cap = cv2.VideoCapture(video_path)
|
| 29 |
-
|
| 30 |
if not cap.isOpened():
|
| 31 |
-
st.error("Error
|
| 32 |
return
|
| 33 |
|
| 34 |
-
|
| 35 |
-
stframe = st.empty()
|
| 36 |
-
|
| 37 |
-
# Choose fault detection type
|
| 38 |
-
choice = st.selectbox("Choose Fault Detection", ["Solar Panel", "Windmill"])
|
| 39 |
-
model = None
|
| 40 |
-
if choice == "Solar Panel":
|
| 41 |
-
model = load_solar_model()
|
| 42 |
-
else:
|
| 43 |
-
model = load_windmill_model()
|
| 44 |
-
|
| 45 |
while cap.isOpened():
|
| 46 |
ret, frame = cap.read()
|
| 47 |
if not ret:
|
| 48 |
break
|
| 49 |
|
| 50 |
-
|
| 51 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
faults = detect_faults_solar(model, frame_rgb) if
|
|
|
|
| 55 |
|
| 56 |
-
# Draw bounding boxes and labels
|
| 57 |
for fault in faults:
|
| 58 |
x, y = int(fault['location'][0]), int(fault['location'][1])
|
| 59 |
-
cv2.
|
| 60 |
-
cv2.
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
cap.release()
|
|
|
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|
| 68 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from services.detection_service import detect_faults_solar, detect_faults_windmill
|
| 8 |
+
from services.anomaly_service import track_anomalies, predict_anomaly
|
| 9 |
from models.solar_model import load_solar_model
|
| 10 |
from models.windmill_model import load_windmill_model
|
| 11 |
+
from config.settings import VIDEO_FOLDER
|
| 12 |
+
|
| 13 |
+
# Initialize session state for logs, metrics, and trends
|
| 14 |
+
if 'logs' not in st.session_state:
|
| 15 |
+
st.session_state.logs = []
|
| 16 |
+
if 'anomaly_counts' not in st.session_state:
|
| 17 |
+
st.session_state.anomaly_counts = []
|
| 18 |
+
if 'frame_numbers' not in st.session_state:
|
| 19 |
+
st.session_state.frame_numbers = []
|
| 20 |
+
if 'total_detected' not in st.session_state:
|
| 21 |
+
st.session_state.total_detected = 0
|
| 22 |
|
| 23 |
def main():
|
| 24 |
+
st.title("Thermal Anomaly Monitoring Dashboard")
|
| 25 |
+
st.markdown("**Status:** 🟢 Running")
|
| 26 |
+
|
| 27 |
+
# Sidebar for video selection and detection type
|
| 28 |
+
st.sidebar.header("Settings")
|
| 29 |
+
video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')]
|
| 30 |
+
if not video_files:
|
| 31 |
+
st.error("No videos found in the 'data' folder. Please add .mp4 files.")
|
| 32 |
+
return
|
| 33 |
+
video_file = st.sidebar.selectbox("Select Video", video_files)
|
| 34 |
+
detection_type = st.sidebar.selectbox("Detection Type", ["Solar Panel", "Windmill"])
|
| 35 |
+
|
| 36 |
+
# Load the appropriate model
|
| 37 |
+
model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model()
|
| 38 |
+
|
| 39 |
+
# Layout: Two columns for video feed and metrics
|
| 40 |
+
col1, col2 = st.columns([3, 1])
|
| 41 |
+
|
| 42 |
+
with col1:
|
| 43 |
+
st.subheader("Live Video Feed")
|
| 44 |
+
video_placeholder = st.empty()
|
| 45 |
+
|
| 46 |
+
with col2:
|
| 47 |
+
st.subheader("Live Metrics")
|
| 48 |
+
metrics_placeholder = st.empty()
|
| 49 |
+
|
| 50 |
+
# Layout: Two columns for logs and trends
|
| 51 |
+
col3, col4 = st.columns([1, 2])
|
| 52 |
+
|
| 53 |
+
with col3:
|
| 54 |
+
st.subheader("Live Logs")
|
| 55 |
+
logs_placeholder = st.empty()
|
| 56 |
+
st.subheader("Last 5 Captured Events")
|
| 57 |
+
events_placeholder = st.empty()
|
| 58 |
+
|
| 59 |
+
with col4:
|
| 60 |
+
st.subheader("Detection Trends")
|
| 61 |
+
trends_placeholder = st.empty()
|
| 62 |
+
|
| 63 |
+
# Process video
|
| 64 |
if video_file:
|
| 65 |
video_path = os.path.join(VIDEO_FOLDER, video_file)
|
|
|
|
|
|
|
|
|
|
| 66 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
| 67 |
if not cap.isOpened():
|
| 68 |
+
st.error("Error: Could not open video file.")
|
| 69 |
return
|
| 70 |
|
| 71 |
+
frame_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
while cap.isOpened():
|
| 73 |
ret, frame = cap.read()
|
| 74 |
if not ret:
|
| 75 |
break
|
| 76 |
|
| 77 |
+
frame_count += 1
|
| 78 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 79 |
|
| 80 |
+
# Detect faults
|
| 81 |
+
faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb)
|
| 82 |
+
num_anomalies = len(faults)
|
| 83 |
|
| 84 |
+
# Draw bounding boxes and labels
|
| 85 |
for fault in faults:
|
| 86 |
x, y = int(fault['location'][0]), int(fault['location'][1])
|
| 87 |
+
cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2)
|
| 88 |
+
cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40),
|
| 89 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
|
| 90 |
+
|
| 91 |
+
# Update video feed with timestamp
|
| 92 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 93 |
+
video_placeholder.image(frame_rgb, channels="RGB", caption=f"{timestamp}")
|
| 94 |
+
|
| 95 |
+
# Update logs and metrics
|
| 96 |
+
log_entry = f"{timestamp} - Frame {frame_count} - Anomalies: {num_anomalies}"
|
| 97 |
+
st.session_state.logs.append(log_entry)
|
| 98 |
+
st.session_state.total_detected += num_anomalies
|
| 99 |
+
st.session_state.anomaly_counts.append(num_anomalies)
|
| 100 |
+
st.session_state.frame_numbers.append(frame_count)
|
| 101 |
+
|
| 102 |
+
# Keep only the last 100 frames for trends to avoid memory issues
|
| 103 |
+
if len(st.session_state.frame_numbers) > 100:
|
| 104 |
+
st.session_state.frame_numbers.pop(0)
|
| 105 |
+
st.session_state.anomaly_counts.pop(0)
|
| 106 |
+
|
| 107 |
+
# Update live logs (show all logs, scrollable)
|
| 108 |
+
with logs_placeholder.container():
|
| 109 |
+
for log in st.session_state.logs[::-1]: # Reverse to show newest first
|
| 110 |
+
st.write(log)
|
| 111 |
+
|
| 112 |
+
# Update last 5 captured events
|
| 113 |
+
with events_placeholder.container():
|
| 114 |
+
for log in st.session_state.logs[-5:][::-1]: # Last 5, newest first
|
| 115 |
+
st.write(log)
|
| 116 |
+
|
| 117 |
+
# Update live metrics
|
| 118 |
+
metrics_placeholder.write(f"""
|
| 119 |
+
**anomalies:** {num_anomalies}
|
| 120 |
+
**total_detected:** {st.session_state.total_detected}
|
| 121 |
+
""")
|
| 122 |
+
|
| 123 |
+
# Predictive anomaly detection
|
| 124 |
+
prediction = predict_anomaly(st.session_state.anomaly_counts)
|
| 125 |
+
if prediction:
|
| 126 |
+
metrics_placeholder.warning(f"**Prediction:** Potential issue detected - anomaly spike detected!")
|
| 127 |
+
|
| 128 |
+
# Update trends graph
|
| 129 |
+
fig, ax = plt.subplots()
|
| 130 |
+
ax.plot(st.session_state.frame_numbers, st.session_state.anomaly_counts, marker='o')
|
| 131 |
+
ax.set_title("Anomalies Over Time")
|
| 132 |
+
ax.set_xlabel("Frame")
|
| 133 |
+
ax.set_ylabel("Count")
|
| 134 |
+
ax.grid(True)
|
| 135 |
+
trends_placeholder.pyplot(fig)
|
| 136 |
+
plt.close(fig)
|
| 137 |
|
| 138 |
cap.release()
|
| 139 |
+
st.success("Video processing completed.")
|
| 140 |
|
| 141 |
if __name__ == "__main__":
|
| 142 |
+
main()
|