File size: 1,018 Bytes
eb732da
 
 
 
 
 
 
 
 
 
 
 
27eeec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb732da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
title: Solar Wind Fault Detection
emoji: 🐠
colorFrom: purple
colorTo: indigo
sdk: streamlit
sdk_version: 1.45.0
app_file: app.py
pinned: false
license: apache-2.0
---

# Thermal Anomaly Monitoring Dashboard

A dashboard for real-time fault detection in solar panels and windmill turbines using drone or CCTV footage. Built with Streamlit and YOLOv5, deployed on Hugging Face Spaces.

## Features
- Live video feed with fault detection (bounding boxes and labels).
- Live logs, metrics, and anomaly trends.
- Predictive anomaly detection based on trends.
- Videos stored in the `data` folder.

## Setup
1. Place `.mp4` videos in the `data` folder.
2. Install dependencies: `pip install -r requirements.txt`.
3. Run the app: `streamlit run app.py`.
4. Deploy on Hugging Face Spaces.

## Notes
- Fine-tune YOLOv5 models for accurate fault detection.
- Update class IDs in `detection_service.py` based on your model.

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference