DSatishchandra commited on
Commit
c53c45c
·
verified ·
1 Parent(s): a07398d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -12,16 +12,17 @@ model_path = "best.pt"
12
  if not os.path.exists(model_path):
13
  os.system("wget https://huggingface.co/datasets/Prasanna1622/solar-fault-dataset/resolve/main/best.pt")
14
 
 
 
15
 
16
-
17
- # Inference function
18
  def detect_faults(video_path):
19
  """
20
  - video_path: the path to the uploaded video file on disk.
21
  - Returns: path to the annotated output.mp4.
22
  """
23
  try:
24
- # Create a unique RUN directory so YOLO does overwrite previous results
25
  unique_id = str(uuid.uuid4())[:8]
26
  project_dir = os.path.join("runs", "detect", unique_id)
27
  os.makedirs(project_dir, exist_ok=True)
@@ -29,7 +30,7 @@ def detect_faults(video_path):
29
 
30
  # Run YOLO predict; this saves the annotated video in project_dir/
31
  results = model.predict(
32
- source=video_path, # path to the uploaded video
33
  save=True,
34
  save_txt=False,
35
  conf=0.5,
@@ -38,8 +39,7 @@ def detect_faults(video_path):
38
  )
39
  print("✅ YOLO predict() finished.")
40
 
41
- # YOLO’s default behavior:
42
- # annotated video is saved in runs/detect/<unique_id>/<original_filename>
43
  original_name = os.path.basename(video_path)
44
  output_video_path = os.path.join("runs", "detect", unique_id, original_name)
45
  print(f"🛠️ Looking for output video at: {output_video_path}")
 
12
  if not os.path.exists(model_path):
13
  os.system("wget https://huggingface.co/datasets/Prasanna1622/solar-fault-dataset/resolve/main/best.pt")
14
 
15
+ # Initialize the YOLO model
16
+ model = YOLO(model_path)
17
 
18
+ # Inference function
 
19
  def detect_faults(video_path):
20
  """
21
  - video_path: the path to the uploaded video file on disk.
22
  - Returns: path to the annotated output.mp4.
23
  """
24
  try:
25
+ # Create a unique RUN directory so YOLO does not overwrite previous results
26
  unique_id = str(uuid.uuid4())[:8]
27
  project_dir = os.path.join("runs", "detect", unique_id)
28
  os.makedirs(project_dir, exist_ok=True)
 
30
 
31
  # Run YOLO predict; this saves the annotated video in project_dir/
32
  results = model.predict(
33
+ source=video_path, # path to the uploaded video
34
  save=True,
35
  save_txt=False,
36
  conf=0.5,
 
39
  )
40
  print("✅ YOLO predict() finished.")
41
 
42
+ # Check if output video exists
 
43
  original_name = os.path.basename(video_path)
44
  output_video_path = os.path.join("runs", "detect", unique_id, original_name)
45
  print(f"🛠️ Looking for output video at: {output_video_path}")