import gradio as gr # Import Gradio for building the interactive UI import cv2 # Import OpenCV for video processing and annotation import os # Import os for file handling import numpy as np # Import NumPy for array operations from datetime import datetime # Import datetime for timestamp generation import matplotlib.pyplot as plt # Import Matplotlib for plotting trends # Import custom modules for fault detection, model loading, and settings from services.detection_service import detect_faults_solar, detect_faults_windmill from services.anomaly_service import track_faults, predict_fault from models.solar_model import load_solar_model from models.windmill_model import load_windmill_model from config.settings import VIDEO_FOLDER # Initialize global state to track faults across frames logs = [] # List to store log entries fault_counts = [] # List to store fault counts per frame frame_numbers = [] # List to store frame numbers total_detected = 0 # Counter for total faults detected # Custom CSS to style the dashboard, mimicking the screenshot's blue borders and layout css = """ """ # Function to process video frames and detect faults def process_video(video_path, detection_type): global logs, fault_counts, frame_numbers, total_detected cap = cv2.VideoCapture(video_path) # Open the video file if not cap.isOpened(): return "Error: Could not open video file.", None, None, None, None, None model = load_solar_model() if detection_type == "Solar Panel" else load_windmill_model() # Load appropriate model frame_count = 0 # Clear previous state for a new video session logs.clear() fault_counts.clear() frame_numbers.clear() total_detected = 0 while cap.isOpened(): ret, frame = cap.read() # Read each frame if not ret: break frame_count += 1 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert to RGB for display # Detect faults using the appropriate model faults = detect_faults_solar(model, frame_rgb) if detection_type == "Solar Panel" else detect_faults_windmill(model, frame_rgb) num_faults = len(faults) # Draw bounding boxes and labels for detected faults for fault in faults: x, y = int(fault['location'][0]), int(fault['location'][1]) cv2.rectangle(frame_rgb, (x-30, y-30), (x+30, y+30), (255, 0, 0), 2) # Draw blue box cv2.putText(frame_rgb, f"{fault['type']}", (x, y-40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2) # Add fault type label # Update state with current frame data timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") log_entry = f"{timestamp} - Frame {frame_count} - Faults: {num_faults}" logs.append(log_entry) total_detected += num_faults fault_counts.append(num_faults) frame_numbers.append(frame_count) # Limit data to last 100 frames for performance if len(frame_numbers) > 100: frame_numbers.pop(0) fault_counts.pop(0) # Prepare outputs for Gradio UI video_output = frame_rgb metrics = f"faults: {num_faults}
total_detected: {total_detected}" live_logs = "
".join(logs[-20:]) # Display last 20 logs last_5_events = "
".join(logs[-5:]) if logs else "No events yet" prediction = "Potential fault escalation detected!" if predict_fault(fault_counts) else "" # Generate fault trends graph fig, ax = plt.subplots(figsize=(6, 3)) ax.plot(frame_numbers, fault_counts, marker='o', color='blue') ax.set_title("Faults Over Time", fontsize=10) ax.set_xlabel("Frame", fontsize=8) ax.set_ylabel("Count", fontsize=8) ax.grid(True) ax.tick_params(axis='both', which='major', labelsize=6) plt.tight_layout() return video_output, metrics, live_logs, last_5_events, fig, prediction # Create Gradio Blocks interface with custom CSS with gr.Blocks(css=css) as demo: gr.Markdown("### THERMAL FAULT DETECTION DASHBOARD") # Main header gr.Markdown("#### 🟢 RUNNING") # Status indicator with gr.Row(): with gr.Column(scale=3): with gr.Column(): gr.Markdown("**LIVE VIDEO FEED**") # Section title gr.Markdown('
', unsafe_allow_html=True) video_output = gr.Image(label="", interactive=False) # Display video feed gr.Markdown('
', unsafe_allow_html=True) with gr.Column(scale=1): with gr.Column(): gr.Markdown("**LIVE METRICS**") # Section title gr.Markdown('
', unsafe_allow_html=True) metrics_output = gr.Markdown(label="") # Display metrics prediction_output = gr.Markdown(label="") # Display prediction warning gr.Markdown('
', unsafe_allow_html=True) with gr.Row(): with gr.Column(scale=1): with gr.Column(): gr.Markdown("**LIVE LOGS**") # Section title gr.Markdown('
', unsafe_allow_html=True) logs_output = gr.Markdown(label="") # Display live logs gr.Markdown('
', unsafe_allow_html=True) with gr.Column(): gr.Markdown("**LAST 5 CAPTURED EVENTS**") # Section title gr.Markdown('
', unsafe_allow_html=True) events_output = gr.Markdown(label="") # Display last 5 events gr.Markdown('
', unsafe_allow_html=True) with gr.Column(scale=2): with gr.Column(): gr.Markdown("**DETECTION TRENDS**") # Section title gr.Markdown('
', unsafe_allow_html=True) gr.Markdown("**Faults Over Time**") # Sub-title trends_output = gr.Plot(label="") # Display fault trends graph gr.Markdown('
', unsafe_allow_html=True) # Sidebar for user inputs with gr.Row(): with gr.Column(): video_files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith('.mp4')] # Get video files video_input = gr.Dropdown(choices=video_files, label="Select Video") # Video selection detection_type = gr.Dropdown(choices=["Solar Panel", "Windmill"], label="Detection Type") # Detection type submit_btn = gr.Button("Start Processing") # Trigger button # Connect inputs to outputs with event trigger submit_btn.click( fn=process_video, inputs=[video_input, detection_type], outputs=[video_output, metrics_output, logs_output, events_output, trends_output, prediction_output], _js="() => [document.querySelector('input[type=\"file\"]').value, document.querySelector('select[name=\"detection_type\"]').value]" ) # Launch the Gradio app demo.launch()