DSatishchandra's picture
Update services/detection_service.py
7e0a485 verified
import torch # Import PyTorch for tensor operations
import numpy as np # Import NumPy for array handling
# Function to detect faults in solar panels
def detect_faults_solar(model, image):
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0 # Convert image to tensor
img_tensor = img_tensor.unsqueeze(0) # Add batch dimension
results = model.predict(img_tensor, verbose=False) # Perform inference
faults = [] # List to store detected faults
for detection in results[0].boxes: # Iterate over detected objects
class_id = int(detection.cls)
if class_id == 0:
faults.append({"type": "Crack", "location": (detection.xyxy[0][0].item(), detection.xyxy[0][1].item())})
elif class_id == 1:
faults.append({"type": "Damage", "location": (detection.xyxy[0][0].item(), detection.xyxy[0][1].item())})
elif class_id == 4:
faults.append({"type": "Hotspot", "location": (detection.xyxy[0][0].item(), detection.xyxy[0][1].item())})
return faults # Return list of faults
# Function to detect faults in windmills
def detect_faults_windmill(model, image):
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0 # Convert image to tensor
img_tensor = img_tensor.unsqueeze(0) # Add batch dimension
results = model.predict(img_tensor, verbose=False) # Perform inference
faults = [] # List to store detected faults
for detection in results[0].boxes: # Iterate over detected objects
class_id = int(detection.cls)
if class_id == 2:
faults.append({"type": "Blade Damage", "location": (detection.xyxy[0][0].item(), detection.xyxy[0][1].item())})
elif class_id == 3:
faults.append({"type": "Motor Fault", "location": (detection.xyxy[0][0].item(), detection.xyxy[0][1].item())})
return faults # Return list of faults