Solar_Panels / models /thermal_anomaly_detection.py
DSatishchandra's picture
Update models/thermal_anomaly_detection.py
a3b8388 verified
import torch
from torchvision import models, transforms
from PIL import Image
import numpy as np
# Load a pretrained ResNet50 model for thermal anomaly detection
model = models.resnet50(weights='ResNet50_Weights.IMAGENET1K_V1') # Updated to use weights instead of pretrained
model.eval()
def detect_thermal_anomalies(image_path):
"""
Detect thermal anomalies in solar panels using thermal images.
Args:
- image_path (str): Path to the thermal image file
Returns:
- anomaly (str): Description of the detected thermal anomaly
"""
# Image preprocessing for ResNet
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image = Image.open(image_path)
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = model(image_tensor)
_, predicted_class = torch.max(output, 1)
# Simulate anomaly detection (you can replace this with actual anomaly labels)
anomaly = "Overheating detected" if predicted_class == 0 else "Normal condition"
return anomaly