Spaces:
Runtime error
Runtime error
import torch | |
from torchvision import models, transforms | |
from PIL import Image | |
import numpy as np | |
# Load a pretrained ResNet50 model for thermal anomaly detection | |
model = models.resnet50(weights='ResNet50_Weights.IMAGENET1K_V1') # Updated to use weights instead of pretrained | |
model.eval() | |
def detect_thermal_anomalies(image_path): | |
""" | |
Detect thermal anomalies in solar panels using thermal images. | |
Args: | |
- image_path (str): Path to the thermal image file | |
Returns: | |
- anomaly (str): Description of the detected thermal anomaly | |
""" | |
# Image preprocessing for ResNet | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
image = Image.open(image_path) | |
image_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(image_tensor) | |
_, predicted_class = torch.max(output, 1) | |
# Simulate anomaly detection (you can replace this with actual anomaly labels) | |
anomaly = "Overheating detected" if predicted_class == 0 else "Normal condition" | |
return anomaly |