import pandas as pd import numpy as np import datetime import uuid def simulate_data(n=50, faults=True, update_time=None): today = datetime.date.today() update_time = update_time or datetime.datetime.now() # Use provided time or current time poles = [f"Pole_{i+1:03}" for i in range(n)] # Distribute poles across 4 locations locations = ["Hyderabad"] * 12 + ["Gadwal"] * 12 + ["Kurnool"] * 12 + ["Bangalore"] * 14 # Simulate coordinates and zones for each location coords = { "Hyderabad": [(17.385 + np.random.uniform(-0.05, 0.05), 78.486 + np.random.uniform(-0.05, 0.05), f"Zone_{np.random.choice(['North', 'South', 'Central'])}") for _ in range(12)], "Gadwal": [(16.235 + np.random.uniform(-0.03, 0.03), 77.795 + np.random.uniform(-0.03, 0.03), f"Zone_{np.random.choice(['East', 'West'])}") for _ in range(12)], "Kurnool": [(15.828 + np.random.uniform(-0.04, 0.04), 78.037 + np.random.uniform(-0.04, 0.04), f"Zone_{np.random.choice(['Urban', 'Rural'])}") for _ in range(12)], "Bangalore": [(12.971 + np.random.uniform(-0.06, 0.06), 77.594 + np.random.uniform(-0.06, 0.06), f"Zone_{np.random.choice(['Downtown', 'Suburban', 'Industrial'])}") for _ in range(14)] } location_coords = [] for loc in locations: coord = coords[loc].pop(0) location_coords.append(coord) data = [] for i, (pole, location, (lat, lon, zone)) in enumerate(zip(poles, locations, location_coords)): solar = round(np.random.uniform(3.0, 7.5), 2) wind = round(np.random.uniform(0.5, 2.0), 2) required = round(np.random.uniform(1.0, 1.5), 2) total = solar + wind cam = np.random.choice(['Online', 'Offline'], p=[0.85, 0.15]) if faults else "Online" tilt = round(np.random.uniform(0, 12), 1) vib = round(np.random.uniform(0.1, 2.5), 2) sufficient = "Yes" if total >= required else "No" rfid = str(uuid.uuid4())[:16] # 16-digit unique RFID anomaly = [] if faults: if solar < 4.0: anomaly.append("Low Solar Output") if wind < 0.7: anomaly.append("Low Wind Output") if tilt > 10: anomaly.append("High Pole Tilt Risk") if vib > 2.0: anomaly.append("Excessive Vibration") if cam == "Offline": anomaly.append("Camera Offline") if sufficient == "No": anomaly.append("Power Insufficient") alert = "Green" if len(anomaly) == 1: alert = "Yellow" elif len(anomaly) > 1: alert = "Red" data.append({ "PoleID": pole, "RFID": rfid, "Location": location, "Zone": zone, "Latitude": lat, "Longitude": lon, "Date": today, "Timestamp": update_time, "SolarGen(kWh)": solar, "WindGen(kWh)": wind, "PowerRequired(kWh)": required, "PowerSufficient": sufficient, "CameraStatus": cam, "Tilt(°)": tilt, "Vibration(g)": vib, "Anomalies": ";".join(anomaly) if anomaly else "None", "AlertLevel": alert }) return pd.DataFrame(data)