Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
import datetime | |
import uuid | |
def simulate_data(n=50, faults=True, update_time=None): | |
today = datetime.date.today() | |
update_time = update_time or datetime.datetime.now() # Use provided time or current time | |
poles = [f"Pole_{i+1:03}" for i in range(n)] | |
# Distribute poles across 4 locations | |
locations = ["Hyderabad"] * 12 + ["Gadwal"] * 12 + ["Kurnool"] * 12 + ["Bangalore"] * 14 | |
# Simulate coordinates and zones for each location | |
coords = { | |
"Hyderabad": [(17.385 + np.random.uniform(-0.05, 0.05), 78.486 + np.random.uniform(-0.05, 0.05), f"Zone_{np.random.choice(['North', 'South', 'Central'])}") for _ in range(12)], | |
"Gadwal": [(16.235 + np.random.uniform(-0.03, 0.03), 77.795 + np.random.uniform(-0.03, 0.03), f"Zone_{np.random.choice(['East', 'West'])}") for _ in range(12)], | |
"Kurnool": [(15.828 + np.random.uniform(-0.04, 0.04), 78.037 + np.random.uniform(-0.04, 0.04), f"Zone_{np.random.choice(['Urban', 'Rural'])}") for _ in range(12)], | |
"Bangalore": [(12.971 + np.random.uniform(-0.06, 0.06), 77.594 + np.random.uniform(-0.06, 0.06), f"Zone_{np.random.choice(['Downtown', 'Suburban', 'Industrial'])}") for _ in range(14)] | |
} | |
location_coords = [] | |
for loc in locations: | |
coord = coords[loc].pop(0) | |
location_coords.append(coord) | |
data = [] | |
for i, (pole, location, (lat, lon, zone)) in enumerate(zip(poles, locations, location_coords)): | |
solar = round(np.random.uniform(3.0, 7.5), 2) | |
wind = round(np.random.uniform(0.5, 2.0), 2) | |
required = round(np.random.uniform(1.0, 1.5), 2) | |
total = solar + wind | |
cam = np.random.choice(['Online', 'Offline'], p=[0.85, 0.15]) if faults else "Online" | |
tilt = round(np.random.uniform(0, 12), 1) | |
vib = round(np.random.uniform(0.1, 2.5), 2) | |
sufficient = "Yes" if total >= required else "No" | |
rfid = str(uuid.uuid4())[:16] # 16-digit unique RFID | |
anomaly = [] | |
if faults: | |
if solar < 4.0: | |
anomaly.append("Low Solar Output") | |
if wind < 0.7: | |
anomaly.append("Low Wind Output") | |
if tilt > 10: | |
anomaly.append("High Pole Tilt Risk") | |
if vib > 2.0: | |
anomaly.append("Excessive Vibration") | |
if cam == "Offline": | |
anomaly.append("Camera Offline") | |
if sufficient == "No": | |
anomaly.append("Power Insufficient") | |
alert = "Green" | |
if len(anomaly) == 1: | |
alert = "Yellow" | |
elif len(anomaly) > 1: | |
alert = "Red" | |
data.append({ | |
"PoleID": pole, | |
"RFID": rfid, | |
"Location": location, | |
"Zone": zone, | |
"Latitude": lat, | |
"Longitude": lon, | |
"Date": today, | |
"Timestamp": update_time, | |
"SolarGen(kWh)": solar, | |
"WindGen(kWh)": wind, | |
"PowerRequired(kWh)": required, | |
"PowerSufficient": sufficient, | |
"CameraStatus": cam, | |
"Tilt(°)": tilt, | |
"Vibration(g)": vib, | |
"Anomalies": ";".join(anomaly) if anomaly else "None", | |
"AlertLevel": alert | |
}) | |
return pd.DataFrame(data) |