Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from modules.simulator import simulate_data | |
| from modules.filters import apply_filters | |
| from modules.visuals import display_dashboard, display_charts, display_map_heatmap | |
| from modules.scheduler import get_latest_data | |
| from datetime import datetime | |
| # Set page config as the first Streamlit command | |
| st.set_page_config(page_title="Vedavathi Smart Pole Monitoring", layout="wide") | |
| # Inject CSS for blinking red dots with enhanced animation | |
| st.markdown(""" | |
| <style> | |
| .blinking-red { | |
| animation: pulse 1s infinite; | |
| } | |
| @keyframes pulse { | |
| 0% { opacity: 1; transform: scale(1); } | |
| 50% { opacity: 0.3; transform: scale(1.3); } | |
| 100% { opacity: 1; transform: scale(1); } | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| st.title("π‘ Vedavathi Smart Pole Monitoring - PoC Simulator") | |
| st.sidebar.header("π οΈ Simulation Controls") | |
| num_poles = 50 # Fixed number of poles | |
| st.sidebar.write(f"Number of Poles: {num_poles}") | |
| simulate_faults = st.sidebar.checkbox("Simulate Random Faults", value=True) | |
| # Get latest data from scheduler | |
| df, last_update = get_latest_data(num_poles, simulate_faults) | |
| st.write(f"Last Data Update: {last_update.strftime('%Y-%m-%d %H:%M:%S')} (Updates every 6 hours)") | |
| st.sidebar.header("π Filter Data") | |
| alert_filter = st.sidebar.multiselect("Alert Level", ["Green", "Yellow", "Red"], default=["Green", "Yellow", "Red"]) | |
| cam_filter = st.sidebar.selectbox("Camera Status", ["All", "Online", "Offline"], index=0) | |
| location_filter = st.sidebar.multiselect("Location", ["Hyderabad", "Gadwal", "Kurnool", "Bangalore"], default=["Hyderabad", "Gadwal", "Kurnool", "Bangalore"]) | |
| filtered_df = apply_filters(df, alert_filter, cam_filter, location_filter) | |
| # Create tabs for each location | |
| tabs = st.tabs(["Hyderabad", "Gadwal", "Kurnool", "Bangalore"]) | |
| locations = ["Hyderabad", "Gadwal", "Kurnool", "Bangalore"] | |
| for tab, location in zip(tabs, locations): | |
| with tab: | |
| location_df = filtered_df[filtered_df["Location"] == location] | |
| if not location_df.empty: | |
| display_dashboard(location_df, location) | |
| st.subheader(f"π Pole Monitoring Table - {location}") | |
| st.dataframe(location_df[["PoleID", "RFID", "AlertLevel", "Anomalies", "CameraStatus", "SolarGen(kWh)", "WindGen(kWh)", "Tilt(Β°)", "Vibration(g)"]], use_container_width=True) | |
| st.subheader(f"πΊοΈ Alert Map - {location}") | |
| display_map_heatmap(location_df, location) | |
| st.subheader(f"π Energy and Sensor Charts - {location}") | |
| display_charts(location_df) | |
| else: | |
| st.warning(f"No poles found for {location} with the current filters.") |