Spaces:
Sleeping
Sleeping
| import random | |
| import pandas as pd | |
| import streamlit as st | |
| import pydeck as pdk | |
| from datetime import datetime, timedelta | |
| from salesforce_integration import fetch_salesforce_data # Import the Salesforce integration | |
| # ---- Constants ---- | |
| POLES_PER_SITE = 12 | |
| SITES = { | |
| "Hyderabad": [17.385044, 78.486671], | |
| "Gadwal": [16.2351, 77.8052], | |
| "Kurnool": [15.8281, 78.0373], | |
| "Ballari": [12.9716, 77.5946] | |
| } | |
| # ---- Helper Functions ---- | |
| def generate_location(base_lat, base_lon): | |
| return [ | |
| base_lat + random.uniform(-0.02, 0.02), | |
| base_lon + random.uniform(-0.02, 0.02) | |
| ] | |
| def simulate_pole(pole_id, site_name, salesforce_data=None): | |
| lat, lon = generate_location(*SITES[site_name]) | |
| solar_kwh = round(random.uniform(3.0, 7.5), 2) | |
| wind_kwh = round(random.uniform(0.5, 2.0), 2) | |
| power_required = round(random.uniform(4.0, 8.0), 2) | |
| total_power = solar_kwh + wind_kwh | |
| power_status = 'Sufficient' if total_power >= power_required else 'Insufficient' | |
| tilt_angle = round(random.uniform(0, 45), 2) | |
| vibration = round(random.uniform(0, 5), 2) | |
| camera_status = random.choice(['Online', 'Offline']) | |
| alert_level = 'Green' | |
| anomaly_details = [] | |
| if tilt_angle > 30 or vibration > 3: | |
| alert_level = 'Yellow' | |
| anomaly_details.append("Tilt or Vibration threshold exceeded.") | |
| if tilt_angle > 40 or vibration > 4.5: | |
| alert_level = 'Red' | |
| anomaly_details.append("Critical tilt or vibration detected.") | |
| health_score = max(0, 100 - (tilt_angle + vibration * 10)) | |
| timestamp = datetime.now() - timedelta(hours=random.randint(0, 6)) | |
| # If salesforce data exists, prioritize it over simulation | |
| if salesforce_data: | |
| # Merge or override simulated data with Salesforce data | |
| for pole_data in salesforce_data: | |
| if pole_data['Site'] == site_name and pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}': | |
| solar_kwh = pole_data.get('Solar (kWh)', solar_kwh) | |
| wind_kwh = pole_data.get('Wind (kWh)', wind_kwh) | |
| power_required = pole_data.get('Power Required (kWh)', power_required) | |
| total_power = solar_kwh + wind_kwh | |
| power_status = 'Sufficient' if total_power >= power_required else 'Insufficient' | |
| health_score = round(pole_data.get('Health Score', health_score), 2) | |
| alert_level = pole_data.get('Alert Level', alert_level) | |
| break | |
| return { | |
| 'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}', | |
| 'Site': site_name, | |
| 'Latitude': lat, | |
| 'Longitude': lon, | |
| 'Solar (kWh)': solar_kwh, | |
| 'Wind (kWh)': wind_kwh, | |
| 'Power Required (kWh)': power_required, | |
| 'Total Power (kWh)': total_power, | |
| 'Power Status': power_status, | |
| 'Tilt Angle (Β°)': tilt_angle, | |
| 'Vibration (g)': vibration, | |
| 'Camera Status': camera_status, | |
| 'Health Score': round(health_score, 2), | |
| 'Alert Level': alert_level, | |
| 'Anomalies': "; ".join(anomaly_details), | |
| 'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S') | |
| } | |
| # ---- Streamlit UI ---- | |
| st.set_page_config(page_title="Smart Pole Monitoring", layout="wide") | |
| st.title("π Smart Renewable Pole Monitoring - Multi-Site") | |
| selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad") | |
| if selected_site in SITES: | |
| # Fetch Salesforce data | |
| salesforce_data = fetch_salesforce_data(selected_site) | |
| with st.spinner(f"Simulating poles at {selected_site}..."): | |
| poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)] | |
| df = pd.DataFrame(poles_data) | |
| site_df = df[df['Site'] == selected_site] | |
| # Summary Metrics | |
| col1, col2, col3 = st.columns(3) | |
| col1.metric("Total Poles", site_df.shape[0]) | |
| col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0]) | |
| col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0]) | |
| # Table View | |
| st.subheader(f"π Pole Data Table for {selected_site}") | |
| with st.expander("Filter Options"): | |
| alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique()) | |
| camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique()) | |
| filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))] | |
| st.dataframe(filtered_df, use_container_width=True) | |
| # Charts | |
| st.subheader("π Energy Generation Comparison") | |
| st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean()) | |
| st.subheader("π Tilt vs. Vibration") | |
| st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']]) | |
| # Map with Red Alerts | |
| st.subheader("π Red Alert Pole Locations") | |
| red_df = site_df[site_df['Alert Level'] == 'Red'] | |
| if not red_df.empty: | |
| st.pydeck_chart(pdk.Deck( | |
| initial_view_state=pdk.ViewState( | |
| latitude=SITES[selected_site][0], | |
| longitude=SITES[selected_site][1], | |
| zoom=12, | |
| pitch=50 | |
| ), | |
| layers=[ | |
| pdk.Layer( | |
| 'ScatterplotLayer', | |
| data=red_df, | |
| get_position='[Longitude, Latitude]', | |
| get_color='[255, 0, 0, 160]', | |
| get_radius=100, | |
| ) | |
| ] | |
| )) | |
| st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True) | |
| else: | |
| st.info("No red alerts at this time.") | |
| else: | |
| st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari") | |