File size: 5,870 Bytes
eca7f1c
 
 
 
 
9377013
eca7f1c
 
b74770b
eca7f1c
 
 
 
b74770b
eca7f1c
 
 
 
 
 
 
 
 
9377013
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
e566f9b
eca7f1c
 
e566f9b
eca7f1c
 
e566f9b
eca7f1c
 
 
 
9377013
 
 
 
 
 
 
 
 
 
 
 
 
 
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e566f9b
eca7f1c
 
 
 
 
 
 
e566f9b
eca7f1c
 
9377013
 
 
eca7f1c
9377013
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e566f9b
eca7f1c
 
 
 
b74770b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
from salesforce_integration import fetch_salesforce_data  # Import the Salesforce integration

# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
    "Hyderabad": [17.385044, 78.486671],
    "Gadwal": [16.2351, 77.8052],
    "Kurnool": [15.8281, 78.0373],
    "Ballari": [12.9716, 77.5946]
}

# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
    return [
        base_lat + random.uniform(-0.02, 0.02),
        base_lon + random.uniform(-0.02, 0.02)
    ]

def simulate_pole(pole_id, site_name, salesforce_data=None):
    lat, lon = generate_location(*SITES[site_name])
    solar_kwh = round(random.uniform(3.0, 7.5), 2)
    wind_kwh = round(random.uniform(0.5, 2.0), 2)
    power_required = round(random.uniform(4.0, 8.0), 2)
    total_power = solar_kwh + wind_kwh
    power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'

    tilt_angle = round(random.uniform(0, 45), 2)
    vibration = round(random.uniform(0, 5), 2)
    camera_status = random.choice(['Online', 'Offline'])

    alert_level = 'Green'
    anomaly_details = []
    if tilt_angle > 30 or vibration > 3:
        alert_level = 'Yellow'
        anomaly_details.append("Tilt or Vibration threshold exceeded.")
    if tilt_angle > 40 or vibration > 4.5:
        alert_level = 'Red'
        anomaly_details.append("Critical tilt or vibration detected.")

    health_score = max(0, 100 - (tilt_angle + vibration * 10))
    timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))

    # If salesforce data exists, prioritize it over simulation
    if salesforce_data:
        # Merge or override simulated data with Salesforce data
        for pole_data in salesforce_data:
            if pole_data['Site'] == site_name and pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}':
                solar_kwh = pole_data.get('Solar (kWh)', solar_kwh)
                wind_kwh = pole_data.get('Wind (kWh)', wind_kwh)
                power_required = pole_data.get('Power Required (kWh)', power_required)
                total_power = solar_kwh + wind_kwh
                power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
                health_score = round(pole_data.get('Health Score', health_score), 2)
                alert_level = pole_data.get('Alert Level', alert_level)
                break

    return {
        'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
        'Site': site_name,
        'Latitude': lat,
        'Longitude': lon,
        'Solar (kWh)': solar_kwh,
        'Wind (kWh)': wind_kwh,
        'Power Required (kWh)': power_required,
        'Total Power (kWh)': total_power,
        'Power Status': power_status,
        'Tilt Angle (Β°)': tilt_angle,
        'Vibration (g)': vibration,
        'Camera Status': camera_status,
        'Health Score': round(health_score, 2),
        'Alert Level': alert_level,
        'Anomalies': "; ".join(anomaly_details),
        'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
    }

# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")

selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")

if selected_site in SITES:
    # Fetch Salesforce data
    salesforce_data = fetch_salesforce_data(selected_site)
    
    with st.spinner(f"Simulating poles at {selected_site}..."):
        poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)]
        df = pd.DataFrame(poles_data)
        site_df = df[df['Site'] == selected_site]

    # Summary Metrics
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Poles", site_df.shape[0])
    col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
    col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])

    # Table View
    st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
    with st.expander("Filter Options"):
        alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
        camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())

    filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
    st.dataframe(filtered_df, use_container_width=True)

    # Charts
    st.subheader("πŸ“Š Energy Generation Comparison")
    st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())

    st.subheader("πŸ“ˆ Tilt vs. Vibration")
    st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])

    # Map with Red Alerts
    st.subheader("πŸ“ Red Alert Pole Locations")
    red_df = site_df[site_df['Alert Level'] == 'Red']
    if not red_df.empty:
        st.pydeck_chart(pdk.Deck(
            initial_view_state=pdk.ViewState(
                latitude=SITES[selected_site][0],
                longitude=SITES[selected_site][1],
                zoom=12,
                pitch=50
            ),
            layers=[
                pdk.Layer(
                    'ScatterplotLayer',
                    data=red_df,
                    get_position='[Longitude, Latitude]',
                    get_color='[255, 0, 0, 160]',
                    get_radius=100,
                )
            ]
        ))
        st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
    else:
        st.info("No red alerts at this time.")

else:
    st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")