Heat_map_pole30 / app.py
DSatishchandra's picture
Update app.py
35973e5 verified
raw
history blame
9.46 kB
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [15.1394, 76.9214] # Updated coordinates for Ballari
}
# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
# Anomaly detection
anomalies = []
if solar_kwh < 4.0:
anomalies.append("Low Solar Output")
if wind_kwh < 0.7:
anomalies.append("Low Wind Output")
if tilt_angle > 30:
anomalies.append("Pole Tilt Risk")
if vibration > 3:
anomalies.append("Vibration Alert")
if camera_status == 'Offline':
anomalies.append("Camera Offline")
if power_status == 'Insufficient':
anomalies.append("Power Insufficient")
# Alert level logic
alert_level = 'Green'
if anomalies:
if tilt_angle > 40 or vibration > 4.5 or len(anomalies) > 1:
alert_level = 'Red'
else:
alert_level = 'Yellow'
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': ';'.join(anomalies) if anomalies else 'None',
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# ---- Custom CSS for Advanced UI ----
st.markdown("""
<style>
.stApp {
background-color: #f5f7fa;
}
.metric-card {
background-color: white;
padding: 15px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
text-align: center;
}
.red-alert {
background-color: #ffe6e6;
color: #d32f2f;
padding: 10px;
border-radius: 5px;
font-weight: bold;
}
.sidebar .sidebar-content {
background-color: #ffffff;
border-right: 1px solid #e0e0e0;
}
h1, h2, h3 {
color: #1a237e;
}
</style>
""", unsafe_allow_html=True)
# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
# Sidebar with enhanced controls
with st.sidebar:
st.header("🛠️ Control Panel")
with st.expander("Site Selection", expanded=True):
selected_site = st.selectbox(
"Select Site",
options=list(SITES.keys()),
index=0,
help="Choose a site to monitor poles."
)
with st.expander("Simulation Settings"):
num_poles = st.slider("Number of Poles per Site", 5, 50, POLES_PER_SITE)
simulate_faults = st.checkbox("Simulate Faults", value=True)
with st.expander("Filters"):
alert_filter = st.multiselect(
"Alert Level",
options=['Green', 'Yellow', 'Red'],
default=['Green', 'Yellow', 'Red']
)
camera_filter = st.multiselect(
"Camera Status",
options=['Online', 'Offline'],
default=['Online', 'Offline']
)
# Simulate data
if selected_site in SITES:
with st.spinner(f"Simulating {num_poles} poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(num_poles)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Tabs for different views
tab1, tab2, tab3, tab4 = st.tabs(["📊 Dashboard", "📋 Data Table", "📈 Charts", "📍 Map"])
with tab1:
# Dashboard with metrics
st.subheader("System Overview")
red_alerts_count = site_df[site_df['Alert Level'] == 'Red'].shape[0]
if red_alerts_count > 0:
st.markdown(f"<div class='red-alert'>🚨 {red_alerts_count} Red Alerts Detected! Immediate Action Required!</div>", unsafe_allow_html=True)
else:
st.success("✅ No Red Alerts Detected")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Total Poles", site_df.shape[0])
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Red Alerts", red_alerts_count, delta_color="inverse")
st.markdown("</div>", unsafe_allow_html=True)
with col3:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
st.markdown("</div>", unsafe_allow_html=True)
with col4:
st.markdown("<div class='metric-card'>", unsafe_allow_html=True)
st.metric("Average Health Score", round(site_df['Health Score'].mean(), 2))
st.markdown("</div>", unsafe_allow_html=True)
# Red Alerts Summary
red_df = site_df[site_df['Alert Level'] == 'Red']
if not red_df.empty:
st.subheader("🚨 Critical Red Alerts")
st.dataframe(
red_df[['Pole ID', 'Anomalies', 'Tilt Angle (°)', 'Vibration (g)', 'Power Status', 'Camera Status', 'Health Score', 'Last Checked']],
use_container_width=True
)
csv = red_df.to_csv(index=False)
st.download_button(
label="Download Red Alerts CSV",
data=csv,
file_name=f"{selected_site}_red_alerts.csv",
mime="text/csv"
)
with tab2:
# Filtered Data Table
st.subheader(f"Pole Data for {selected_site}")
filtered_df = site_df[
(site_df['Alert Level'].isin(alert_filter)) &
(site_df['Camera Status'].isin(camera_filter))
]
# Conditional formatting for red alerts
def highlight_red_alerts(row):
return ['background-color: #ffe6e6' if row['Alert Level'] == 'Red' else '' for _ in row]
st.dataframe(
filtered_df[['Pole ID', 'Anomalies', 'Solar (kWh)', 'Wind (kWh)', 'Power Status', 'Tilt Angle (°)', 'Vibration (g)', 'Camera Status', 'Health Score', 'Alert Level', 'Last Checked']].style.apply(highlight_red_alerts, axis=1),
use_container_width=True
)
with tab3:
# Charts
st.subheader("Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("Tilt vs. Vibration")
scatter_data = site_df[['Tilt Angle (°)', 'Vibration (g)', 'Alert Level']].copy()
scatter_data['color'] = scatter_data['Alert Level'].map({
'Green': '[0, 255, 0, 160]',
'Yellow': '[255, 255, 0, 160]',
'Red': '[255, 0, 0, 160]'
})
st.scatter_chart(scatter_data[['Tilt Angle (°)', 'Vibration (g)']])
with tab4:
# Map with Red Alerts
st.subheader("Red Alert Pole Locations")
if not red_df.empty:
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=red_df,
get_position='[Longitude, Latitude]',
get_color='[255, 0, 0, 160]',
get_radius=100,
pickable=True,
auto_highlight=True
)
],
tooltip={
"html": "<b>Pole ID:</b> {Pole ID}<br><b>Anomalies:</b> {Anomalies}<br><b>Tilt:</b> {Tilt Angle (°)}°<br><b>Vibration:</b> {Vibration (g)}g<br><b>Health Score:</b> {Health Score}",
"style": {"backgroundColor": "white", "color": "#333"}
}
))
else:
st.info("No red alerts at this time.")
else:
st.error("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")