Spaces:
Sleeping
Sleeping
Create train_tsh_model.py
Browse files- train_tsh_model.py +34 -0
train_tsh_model.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train_tsh_model.py
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.metrics import r2_score
|
| 8 |
+
import joblib
|
| 9 |
+
|
| 10 |
+
# Load your dataset (update path if necessary)
|
| 11 |
+
df = pd.read_csv("thyroid_dataset.csv")
|
| 12 |
+
|
| 13 |
+
# Choose features and drop rows with missing values
|
| 14 |
+
features = ["T3", "TT4", "T4U", "FTI", "age"]
|
| 15 |
+
df = df.dropna(subset=features + ["TSH"])
|
| 16 |
+
|
| 17 |
+
# Prepare input (X) and output (y)
|
| 18 |
+
X = df[features]
|
| 19 |
+
y = df["TSH"]
|
| 20 |
+
|
| 21 |
+
# Train-test split
|
| 22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 23 |
+
|
| 24 |
+
# Train the model
|
| 25 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
| 26 |
+
model.fit(X_train, y_train)
|
| 27 |
+
|
| 28 |
+
# Evaluate the model
|
| 29 |
+
y_pred = model.predict(X_test)
|
| 30 |
+
print("TSH Model R² Score:", r2_score(y_test, y_pred))
|
| 31 |
+
|
| 32 |
+
# Save the model
|
| 33 |
+
joblib.dump(model, "tsh_model.pkl")
|
| 34 |
+
print("✅ Model saved as tsh_model.pkl")
|