DSatishchandra commited on
Commit
78a7c3e
·
verified ·
1 Parent(s): 6430753

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -6,6 +6,7 @@ import numpy as np
6
  import mediapipe as mp
7
  from sklearn.linear_model import LinearRegression
8
  import random
 
9
 
10
  mp_face_mesh = mp.solutions.face_mesh
11
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
@@ -29,13 +30,13 @@ def train_model(output_range):
29
  model = LinearRegression().fit(X, y)
30
  return model
31
 
32
- import joblib
33
  hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
34
-
35
- hemoglobin_r2 = 0.385
36
- import joblib
37
  spo2_model = joblib.load("spo2_model_simulated.pkl")
38
  hr_model = joblib.load("heart_rate_model.pkl")
 
 
 
39
 
40
  models = {
41
  "Hemoglobin": hemoglobin_model,
@@ -49,7 +50,7 @@ models = {
49
  "Urea": train_model((7, 20)),
50
  "Sodium": train_model((135, 145)),
51
  "Potassium": train_model((3.5, 5.1)),
52
- "TSH": train_model((0.4, 4.0)),
53
  "Cortisol": train_model((5, 25)),
54
  "FBS": train_model((70, 110)),
55
  "HbA1c": train_model((4.0, 5.7)),
 
6
  import mediapipe as mp
7
  from sklearn.linear_model import LinearRegression
8
  import random
9
+ import joblib
10
 
11
  mp_face_mesh = mp.solutions.face_mesh
12
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
 
30
  model = LinearRegression().fit(X, y)
31
  return model
32
 
33
+ # Load real models
34
  hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
 
 
 
35
  spo2_model = joblib.load("spo2_model_simulated.pkl")
36
  hr_model = joblib.load("heart_rate_model.pkl")
37
+ tsh_model = joblib.load("tsh_model.pkl")
38
+
39
+ hemoglobin_r2 = 0.385
40
 
41
  models = {
42
  "Hemoglobin": hemoglobin_model,
 
50
  "Urea": train_model((7, 20)),
51
  "Sodium": train_model((135, 145)),
52
  "Potassium": train_model((3.5, 5.1)),
53
+ "TSH": tsh_model,
54
  "Cortisol": train_model((5, 25)),
55
  "FBS": train_model((70, 110)),
56
  "HbA1c": train_model((4.0, 5.7)),