Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| from sklearn.ensemble import RandomForestRegressor | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import r2_score | |
| import joblib | |
| # Generate synthetic training data for Hemoglobin model | |
| np.random.seed(42) | |
| size = 200 | |
| data = { | |
| "mean_intensity": np.random.uniform(0.2, 0.5, size), | |
| "bbox_width": np.random.uniform(0.05, 0.2, size), | |
| "bbox_height": np.random.uniform(0.05, 0.2, size), | |
| "eye_dist": np.random.uniform(0.2, 0.5, size), | |
| "nose_len": np.random.uniform(0.2, 0.5, size), | |
| "jaw_width": np.random.uniform(0.2, 0.5, size), | |
| "avg_skin_tone": np.random.uniform(0.2, 0.5, size), | |
| "hemoglobin": np.random.uniform(10.5, 17.5, size) # realistic Hb range | |
| } | |
| df = pd.DataFrame(data) | |
| # Save dataset | |
| df.to_csv("hemoglobin_dataset.csv", index=False) | |
| # Train-test split | |
| X = df.drop(columns=["hemoglobin"]) | |
| y = df["hemoglobin"] | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| # Train model | |
| model = RandomForestRegressor(n_estimators=100, random_state=42) | |
| model.fit(X_train, y_train) | |
| # Evaluate | |
| y_pred = model.predict(X_test) | |
| print("R2 Score:", r2_score(y_test, y_pred)) | |
| # Save model | |
| joblib.dump(model, "hemoglobin_model.pkl") | |
| print("Model saved as hemoglobin_model.pkl") | |