Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
|
| 3 |
+
from transformers.pipelines.token_classification import TokenClassificationPipeline
|
| 4 |
+
|
| 5 |
+
class MyPipeline(TokenClassificationPipeline):
|
| 6 |
+
def preprocess(self, sentence, offset_mapping=None):
|
| 7 |
+
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
|
| 8 |
+
model_inputs = self.tokenizer(
|
| 9 |
+
sentence,
|
| 10 |
+
return_tensors=self.framework,
|
| 11 |
+
truncation=truncation,
|
| 12 |
+
return_special_tokens_mask=True,
|
| 13 |
+
return_offsets_mapping=self.tokenizer.is_fast,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
length = len(model_inputs['input_ids'][0]) - 2
|
| 18 |
+
tokens = tokenizer.tokenize(sentence)
|
| 19 |
+
seek = 0
|
| 20 |
+
offset_mapping_list = [[(0, 0)]]
|
| 21 |
+
for i in range(length):
|
| 22 |
+
if tokens[i][-2:] == '@@':
|
| 23 |
+
offset_mapping_list[0].append((seek, seek + len(tokens[i]) - 2))
|
| 24 |
+
seek += len(tokens[i]) - 2
|
| 25 |
+
else:
|
| 26 |
+
offset_mapping_list[0].append((seek, seek + len(tokens[i])))
|
| 27 |
+
seek += len(tokens[i]) + 1
|
| 28 |
+
offset_mapping_list[0].append((0, 0))
|
| 29 |
+
|
| 30 |
+
# if offset_mapping:
|
| 31 |
+
# model_inputs["offset_mapping"] = offset_mapping
|
| 32 |
+
|
| 33 |
+
model_inputs['offset_mapping'] = offset_mapping_list
|
| 34 |
+
model_inputs["sentence"] = sentence
|
| 35 |
+
|
| 36 |
+
return model_inputs
|
| 37 |
+
|
| 38 |
+
model_checkpoint = "DD0101/disfluency-base"
|
| 39 |
+
|
| 40 |
+
my_classifier = pipeline(
|
| 41 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple", pipeline_class=MyPipeline)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
import gradio as gr
|
| 45 |
+
|
| 46 |
+
def ner(text):
|
| 47 |
+
output = my_classifier(text)
|
| 48 |
+
for entity in output:
|
| 49 |
+
entity['entity'] = entity.pop('entity_group')
|
| 50 |
+
return {'text': text, 'entities': output}
|
| 51 |
+
|
| 52 |
+
examples = dataset['test'][:10]['text']
|
| 53 |
+
|
| 54 |
+
demo = gr.Interface(ner,
|
| 55 |
+
gr.Textbox(label='Text', placeholder="Enter sentence here..."),
|
| 56 |
+
gr.HighlightedText(label='Highlighted Output'),
|
| 57 |
+
examples=examples,
|
| 58 |
+
title="Disfluency Detection",
|
| 59 |
+
description="This is an easy-to-use built in Gradio for desmontrating a NER System that identifies disfluency-entities in \
|
| 60 |
+
Vietnamese utterances",
|
| 61 |
+
theme=gr.themes.Soft())
|
| 62 |
+
|
| 63 |
+
demo.launch()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|