Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
| 7 |
+
|
| 8 |
+
def text_generation(input_text, seed):
|
| 9 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
| 10 |
+
torch.manual_seed(seed) # Max value: 18446744073709551615
|
| 11 |
+
outputs = model.generate(input_ids, do_sample=True, min_length=50, max_length=200)
|
| 12 |
+
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 13 |
+
return generated_text
|
| 14 |
+
|
| 15 |
+
title = "Text Generator Demo GPT-Neo"
|
| 16 |
+
description = "Text Generator Application by ecarbo"
|
| 17 |
+
|
| 18 |
+
gr.Interface(
|
| 19 |
+
text_generation,
|
| 20 |
+
[gr.inputs.Textbox(lines=2, label="Enter input text"), gr.inputs.Number(default=10, label="Enter seed number")],
|
| 21 |
+
[gr.outputs.Textbox(type="auto", label="Text Generated")],
|
| 22 |
+
title=title,
|
| 23 |
+
description=description,
|
| 24 |
+
theme="huggingface"
|
| 25 |
+
).launch()
|