CullerWhale's picture
Update app.py
52b6c39 verified
raw
history blame contribute delete
853 Bytes
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import requests
# Initialize the model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda")
def generate_caption(image):
# Process the input image
processed = processor(image, return_tensors="pt").to("cuda")
# Generate caption
outputs = model.generate(**processed)
# Decode and return the first caption
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
# Gradio interface
iface = gr.Interface(fn=generate_caption, inputs=gr.inputs.Image(type="pil"), outputs="text", title="BLIP Image Captioning")
# Launch the app
iface.launch()