Csplk commited on
Commit
3a16411
Β·
1 Parent(s): da6e213
Files changed (1) hide show
  1. back.py +84 -0
back.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import torch
3
+ import re
4
+ import gradio as gr
5
+ from threading import Thread
6
+ from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
7
+ from PIL import ImageDraw
8
+ from torchvision.transforms.v2 import Resize
9
+ import subprocess
10
+
11
+ #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
12
+
13
+ #subprocess.run('cp -r moondream/torch clients/python/moondream/torch')
14
+ #subprocess.run('pip install moondream[gpu]')
15
+
16
+ #def load_moondream():
17
+ # """Load Moondream model and tokenizer."""
18
+ # model = AutoModelForCausalLM.from_pretrained(
19
+ # "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
20
+ # )
21
+ # tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
22
+ # return model, tokenizer
23
+
24
+ """Load Moondream model and tokenizer."""
25
+ moondream = AutoModelForCausalLM.from_pretrained(
26
+ "vikhyatk/moondream2", trust_remote_code=True, device_map={"": "cuda"}
27
+ )
28
+ tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
29
+
30
+ #model_id = "vikhyatk/moondream2"
31
+ #revision = "2025-01-09"
32
+ #tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
33
+ #moondream = AutoModelForCausalLM.from_pretrained(
34
+ # model_id, trust_remote_code=True, revision=revision,
35
+ # torch_dtype=torch.bfloat16, device_map={"": "cuda"},
36
+ #)
37
+
38
+ #moondream.eval()
39
+
40
+ @spaces.GPU(durtion="150")
41
+ def answer_questions(image_tuples, prompt_text):
42
+ result = ""
43
+ Q_and_A = ""
44
+ prompts = [p.strip() for p in prompt_text.split('?')]
45
+ image_embeds = [img[0] for img in image_tuples if img[0] is not None]
46
+ answers = []
47
+
48
+ for prompt in prompts:
49
+ answers.append(moondream.batch_answer(
50
+ images=[img.convert("RGB") for img in image_embeds],
51
+ prompts=[prompt] * len(image_embeds),
52
+ tokenizer=tokenizer
53
+ ))
54
+
55
+ for i, prompt in enumerate(prompts):
56
+ Q_and_A += f"### Q: {prompt}\n"
57
+ for j, image_tuple in enumerate(image_tuples):
58
+ image_name = f"image{j+1}"
59
+ answer_text = answers[i][j]
60
+ Q_and_A += f"**{image_name} A:** \n {answer_text} \n"
61
+
62
+ result = {'headers': prompts, 'data': answers}
63
+ #print("result\n{}\n\nQ_and_A\n{}\n\n".format(result, Q_and_A))
64
+ return Q_and_A, result
65
+
66
+ with gr.Blocks() as demo:
67
+ gr.Markdown("# moondream2 unofficial batch processing demo")
68
+ gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n")
69
+ gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each prompt on each image**")
70
+ gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*")
71
+ gr.Markdown("A tiny vision language model. [moondream2](https://huggingface.co/vikhyatk/moondream2)")
72
+ with gr.Row():
73
+ img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
74
+ with gr.Row():
75
+ prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by question marks. Ex: Describe this image? What is in this image?", lines=8)
76
+ with gr.Row():
77
+ submit = gr.Button("Submit")
78
+ with gr.Row():
79
+ output = gr.Markdown(label="Questions and Answers", line_breaks=True)
80
+ with gr.Row():
81
+ output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
82
+ submit.click(answer_questions, inputs=[img, prompt], outputs=[output, output2])
83
+
84
+ demo.queue().launch()