Spaces:
Runtime error
Runtime error
| import spaces | |
| import argparse | |
| import torch | |
| import re | |
| import gradio as gr | |
| from threading import Thread | |
| from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM | |
| from PIL import Image | |
| parser = argparse.ArgumentParser() | |
| model_id = "vikhyat/moondream2" | |
| revision = "2024-04-02" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
| moondream = AutoModelForCausalLM.from_pretrained( | |
| model_id, trust_remote_code=True, revision=revision, | |
| torch_dtype=torch.float32 | |
| ) | |
| moondream.eval() | |
| def answer_question(images, prompts): | |
| image_embeds = [moondream.encode_image(img) for img in images] | |
| image_embeds = torch.cat(image_embeds, dim=0) | |
| answers = moondream.batch_answer( | |
| images=image_embeds, | |
| prompts=prompts, | |
| tokenizer=tokenizer | |
| ) | |
| return [answer for answer in answers] | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # π moondream2 | |
| A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream) | |
| """ | |
| ) | |
| with gr.Row(): | |
| prompts = gr.Textbox(label="Input", placeholder="Type here...", scale=4) | |
| submit = gr.Button("Submit") | |
| with gr.Row(): | |
| images = gr.Image(type="pil", label="Upload Images", multiple=True) | |
| output = gr.Textbox(label="Response", multiple=True) | |
| submit.click(answer_question, [images, prompts], output) | |
| prompts.submit(answer_question, [images, prompts], output) | |
| demo.queue().launch() |