Upload llama_flash_attn_monkey_patch.py
Browse files
llava/llama_flash_attn_monkey_patch.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
import transformers
|
| 7 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
| 11 |
+
except ImportError:
|
| 12 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
| 13 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def forward(
|
| 17 |
+
self,
|
| 18 |
+
hidden_states: torch.Tensor,
|
| 19 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 20 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 21 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 22 |
+
output_attentions: bool = False,
|
| 23 |
+
use_cache: bool = False,
|
| 24 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 25 |
+
if output_attentions:
|
| 26 |
+
warnings.warn(
|
| 27 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
bsz, q_len, _ = hidden_states.size()
|
| 31 |
+
|
| 32 |
+
query_states = (
|
| 33 |
+
self.q_proj(hidden_states)
|
| 34 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
| 35 |
+
.transpose(1, 2)
|
| 36 |
+
)
|
| 37 |
+
key_states = (
|
| 38 |
+
self.k_proj(hidden_states)
|
| 39 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
| 40 |
+
.transpose(1, 2)
|
| 41 |
+
)
|
| 42 |
+
value_states = (
|
| 43 |
+
self.v_proj(hidden_states)
|
| 44 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
| 45 |
+
.transpose(1, 2)
|
| 46 |
+
) # shape: (b, num_heads, s, head_dim)
|
| 47 |
+
|
| 48 |
+
kv_seq_len = key_states.shape[-2]
|
| 49 |
+
if past_key_value is not None:
|
| 50 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 51 |
+
|
| 52 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 53 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 54 |
+
query_states, key_states, cos, sin, position_ids
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if past_key_value is not None:
|
| 58 |
+
# reuse k, v
|
| 59 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 60 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 61 |
+
|
| 62 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 63 |
+
|
| 64 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 65 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 66 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 67 |
+
|
| 68 |
+
# Transform the data into the format required by flash attention
|
| 69 |
+
qkv = torch.stack([query_states, key_states, value_states], dim=2)
|
| 70 |
+
qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
|
| 71 |
+
key_padding_mask = attention_mask
|
| 72 |
+
|
| 73 |
+
if key_padding_mask is None:
|
| 74 |
+
qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
|
| 75 |
+
cu_q_lens = torch.arange(
|
| 76 |
+
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
|
| 77 |
+
)
|
| 78 |
+
max_s = q_len
|
| 79 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
| 80 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
| 81 |
+
)
|
| 82 |
+
output = output.view(bsz, q_len, -1)
|
| 83 |
+
else:
|
| 84 |
+
qkv = qkv.reshape(bsz, q_len, -1)
|
| 85 |
+
qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
|
| 86 |
+
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
| 87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
| 88 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
| 89 |
+
)
|
| 90 |
+
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
|
| 91 |
+
output = pad_input(output_unpad, indices, bsz, q_len)
|
| 92 |
+
|
| 93 |
+
return self.o_proj(output), None, past_key_value
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
| 97 |
+
# requires the attention mask to be the same as the key_padding_mask
|
| 98 |
+
def _prepare_decoder_attention_mask(
|
| 99 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
| 100 |
+
):
|
| 101 |
+
# [bsz, seq_len]
|
| 102 |
+
return attention_mask
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def replace_llama_attn_with_flash_attn():
|
| 106 |
+
cuda_major, cuda_minor = torch.cuda.get_device_capability()
|
| 107 |
+
if cuda_major < 8:
|
| 108 |
+
warnings.warn(
|
| 109 |
+
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
|
| 110 |
+
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
|
| 111 |
+
)
|
| 112 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
| 113 |
+
_prepare_decoder_attention_mask
|
| 114 |
+
)
|
| 115 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|